mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:14:55 +08:00
Update datasets/classify/index.md Docs (#3244)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
e9205974ff
commit
0632c88722
@ -97,9 +97,9 @@ In this example, the `train` directory contains subdirectories for each class in
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=path/to/data model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Supported Datasets
|
||||
|
||||
TODO
|
||||
TODO
|
||||
|
@ -12,7 +12,7 @@ keywords: pose estimation, datasets, supported formats, YAML file, object class
|
||||
|
||||
** Label Format **
|
||||
|
||||
The dataset format used for training YOLO segmentation models is as follows:
|
||||
The dataset format used for training YOLO pose models is as follows:
|
||||
|
||||
1. One text file per image: Each image in the dataset has a corresponding text file with the same name as the image file and the ".txt" extension.
|
||||
2. One row per object: Each row in the text file corresponds to one object instance in the image.
|
||||
@ -52,7 +52,6 @@ names: [<class-1>, <class-2>, ..., <class-n>]
|
||||
# Keypoints
|
||||
kpt_shape: [num_kpts, dim] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [n1, n2 ... , n(num_kpts)]
|
||||
|
||||
```
|
||||
|
||||
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
|
||||
@ -65,7 +64,7 @@ NOTE: Either `nc` or `names` must be defined. Defining both are not mandatory
|
||||
|
||||
Alternatively, you can directly define class names like this:
|
||||
|
||||
```
|
||||
```yaml
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
@ -118,8 +117,8 @@ TODO
|
||||
|
||||
### COCO dataset format to YOLO format
|
||||
|
||||
```
|
||||
```python
|
||||
from ultralytics.yolo.data.converter import convert_coco
|
||||
|
||||
convert_coco(labels_dir='../coco/annotations/', use_keypoints=True)
|
||||
```
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user