mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
Add max_dim==2
argument to check_imgsz()
(#789)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: andreaswimmer <53872150+andreaswimmer@users.noreply.github.com> Co-authored-by: Mehran Ghandehari <mehran.maps@gmail.com>
This commit is contained in:
parent
5a80ad98db
commit
0d182e80f1
@ -3,18 +3,18 @@
|
||||
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference
|
||||
|
||||
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||
FROM nvcr.io/nvidia/pytorch:23.01-py3
|
||||
# FROM docker.io/pytorch/pytorch:latest
|
||||
FROM pytorch/pytorch:latest
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Remove torch nightly and install torch stable
|
||||
RUN rm -rf /opt/pytorch # remove 1.2GB dir
|
||||
RUN pip uninstall -y torchtext pillow torch torchvision
|
||||
RUN pip install --no-cache torch torchvision
|
||||
|
||||
# Install linux packages
|
||||
RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
RUN apt update
|
||||
RUN TZ=Etc/UTC apt install -y tzdata
|
||||
RUN apt install --no-install-recommends -y git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
|
||||
# RUN alias python=python3
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/ultralytics
|
||||
@ -25,12 +25,18 @@ WORKDIR /usr/src/ultralytics
|
||||
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
|
||||
|
||||
# Install pip packages
|
||||
RUN python -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache ultralytics albumentations comet gsutil notebook
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache ultralytics albumentations comet gsutil notebook \
|
||||
coremltools onnx onnx-simplifier onnxruntime openvino-dev>=2022.3
|
||||
# tensorflow tensorflowjs \
|
||||
|
||||
# Set environment variables
|
||||
ENV OMP_NUM_THREADS=1
|
||||
|
||||
# Cleanup
|
||||
ENV DEBIAN_FRONTEND teletype
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -27,8 +27,8 @@ RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache ultralytics albumentations gsutil notebook \
|
||||
coremltools onnx onnx-simplifier onnxruntime tensorflow-cpu \
|
||||
# openvino-dev>=2022.3 tensorflowjs \
|
||||
coremltools onnx onnx-simplifier onnxruntime openvino-dev>=2022.3 \
|
||||
# tensorflow-cpu tensorflowjs \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Cleanup
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = "8.0.26"
|
||||
__version__ = "8.0.27"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils import ops
|
||||
|
@ -18,6 +18,16 @@ from ultralytics.yolo.utils.downloads import attempt_download_asset, is_url
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
|
||||
|
||||
def check_class_names(names):
|
||||
# Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts.
|
||||
if isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
class AutoBackend(nn.Module):
|
||||
|
||||
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||||
@ -228,11 +238,7 @@ class AutoBackend(nn.Module):
|
||||
# class names
|
||||
if 'names' not in locals(): # names missing
|
||||
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)} # assign default
|
||||
elif isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
names = check_class_names(names)
|
||||
|
||||
self.__dict__.update(locals()) # assign all variables to self
|
||||
|
||||
|
@ -347,23 +347,24 @@ def torch_safe_load(weight):
|
||||
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
|
||||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||
|
||||
model = Ensemble()
|
||||
ensemble = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt = torch_safe_load(w) # load ckpt
|
||||
args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
ckpt.pt_path = weights # attach *.pt file path to model
|
||||
if not hasattr(ckpt, 'stride'):
|
||||
ckpt.stride = torch.tensor([32.])
|
||||
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
model.pt_path = weights # attach *.pt file path to model
|
||||
model.task = guess_model_task(model)
|
||||
if not hasattr(model, 'stride'):
|
||||
model.stride = torch.tensor([32.])
|
||||
|
||||
# Append
|
||||
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
||||
ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode
|
||||
|
||||
# Module compatibility updates
|
||||
for m in model.modules():
|
||||
for m in ensemble.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||||
m.inplace = inplace # torch 1.7.0 compatibility
|
||||
@ -371,16 +372,16 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model
|
||||
if len(model) == 1:
|
||||
return model[-1]
|
||||
if len(ensemble) == 1:
|
||||
return ensemble[-1]
|
||||
|
||||
# Return ensemble
|
||||
print(f'Ensemble created with {weights}\n')
|
||||
for k in 'names', 'nc', 'yaml':
|
||||
setattr(model, k, getattr(model[0], k))
|
||||
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
||||
return model
|
||||
setattr(ensemble, k, getattr(ensemble[0], k))
|
||||
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
|
||||
assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts: {[m.nc for m in ensemble]}'
|
||||
return ensemble
|
||||
|
||||
|
||||
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
||||
@ -392,6 +393,7 @@ def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
||||
# Model compatibility updates
|
||||
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
model.pt_path = weight # attach *.pt file path to model
|
||||
model.task = guess_model_task(model)
|
||||
if not hasattr(model, 'stride'):
|
||||
model.stride = torch.tensor([32.])
|
||||
|
||||
|
@ -1153,7 +1153,7 @@ map:
|
||||
n02009229: little_blue_heron
|
||||
n02009912: American_egret
|
||||
n02011460: bittern
|
||||
n02012849: crane
|
||||
n02012849: crane_(bird)
|
||||
n02013706: limpkin
|
||||
n02017213: European_gallinule
|
||||
n02018207: American_coot
|
||||
@ -1536,7 +1536,7 @@ map:
|
||||
n03124043: cowboy_boot
|
||||
n03124170: cowboy_hat
|
||||
n03125729: cradle
|
||||
n03126707: crane
|
||||
n03126707: crane_(machine)
|
||||
n03127747: crash_helmet
|
||||
n03127925: crate
|
||||
n03131574: crib
|
||||
@ -1657,8 +1657,8 @@ map:
|
||||
n03706229: magnetic_compass
|
||||
n03709823: mailbag
|
||||
n03710193: mailbox
|
||||
n03710637: maillot
|
||||
n03710721: maillot
|
||||
n03710637: maillot_(tights)
|
||||
n03710721: maillot_(tank_suit)
|
||||
n03717622: manhole_cover
|
||||
n03720891: maraca
|
||||
n03721384: marimba
|
||||
|
@ -65,6 +65,7 @@ import pandas as pd
|
||||
import torch
|
||||
|
||||
import ultralytics
|
||||
from ultralytics.nn.autobackend import check_class_names
|
||||
from ultralytics.nn.modules import Detect, Segment
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
@ -151,9 +152,12 @@ class Exporter:
|
||||
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic'
|
||||
|
||||
# Checks
|
||||
model.names = check_class_names(model.names)
|
||||
# if self.args.batch == model.args['batch_size']: # user has not modified training batch_size
|
||||
self.args.batch = 1
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
|
||||
if model.task == 'classify':
|
||||
self.args.nms = self.args.agnostic_nms = False
|
||||
if self.args.optimize:
|
||||
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
||||
|
||||
@ -194,8 +198,14 @@ class Exporter:
|
||||
self.model = model
|
||||
self.file = file
|
||||
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y)
|
||||
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||||
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
||||
self.metadata = {
|
||||
'description': f"Ultralytics {self.pretty_name} model trained on {self.model.args['data']}",
|
||||
'author': 'Ultralytics',
|
||||
'license': 'GPL-3.0 https://ultralytics.com/license',
|
||||
'version': ultralytics.__version__,
|
||||
'stride': int(max(model.stride)),
|
||||
'names': model.names} # model metadata
|
||||
|
||||
# Exports
|
||||
f = [''] * len(fmts) # exported filenames
|
||||
@ -235,12 +245,11 @@ class Exporter:
|
||||
# Finish
|
||||
f = [str(x) for x in f if x] # filter out '' and None
|
||||
if any(f):
|
||||
task = guess_model_task(model)
|
||||
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
||||
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}"
|
||||
f"\nValidate: yolo task={task} mode=val model={f[-1]} {s}"
|
||||
f"\nPredict: yolo task={model.task} mode=predict model={f[-1]} {s}"
|
||||
f"\nValidate: yolo task={model.task} mode=val model={f[-1]} {s}"
|
||||
f"\nVisualize: https://netron.app")
|
||||
|
||||
self.run_callbacks("on_export_end")
|
||||
@ -375,9 +384,13 @@ class Exporter:
|
||||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||
f = self.file.with_suffix('.mlmodel')
|
||||
|
||||
task = self.model.task
|
||||
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model
|
||||
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
|
||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||||
classifier_config = ct.ClassifierConfig(list(model.names.values())) if task == 'classify' else None
|
||||
ct_model = ct.convert(ts,
|
||||
inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])],
|
||||
classifier_config=classifier_config)
|
||||
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
||||
if bits < 32:
|
||||
if MACOS: # quantization only supported on macOS
|
||||
@ -387,6 +400,10 @@ class Exporter:
|
||||
if self.args.nms:
|
||||
ct_model = self._pipeline_coreml(ct_model)
|
||||
|
||||
ct_model.short_description = self.metadata['description']
|
||||
ct_model.author = self.metadata['author']
|
||||
ct_model.license = self.metadata['license']
|
||||
ct_model.version = self.metadata['version']
|
||||
ct_model.save(str(f))
|
||||
return f, ct_model
|
||||
|
||||
@ -687,8 +704,8 @@ class Exporter:
|
||||
out0_shape = out[out0.name].shape
|
||||
out1_shape = out[out1.name].shape
|
||||
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
|
||||
out0_shape = self.output_shape[1], self.output_shape[2] - 5 # (3780, 80)
|
||||
out1_shape = self.output_shape[1], 4 # (3780, 4)
|
||||
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
|
||||
out1_shape = self.output_shape[2], 4 # (3780, 4)
|
||||
|
||||
# Checks
|
||||
names = self.metadata['names']
|
||||
@ -714,7 +731,7 @@ class Exporter:
|
||||
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
|
||||
|
||||
# Print
|
||||
print(spec.description)
|
||||
# print(spec.description)
|
||||
|
||||
# Model from spec
|
||||
model = ct.models.MLModel(spec)
|
||||
@ -771,10 +788,6 @@ class Exporter:
|
||||
|
||||
# Update metadata
|
||||
pipeline.spec.specificationVersion = 5
|
||||
pipeline.spec.description.metadata.versionString = f'Ultralytics YOLOv{ultralytics.__version__}'
|
||||
pipeline.spec.description.metadata.shortDescription = f'Ultralytics {self.pretty_name} CoreML model'
|
||||
pipeline.spec.description.metadata.author = 'Ultralytics (https://ultralytics.com)'
|
||||
pipeline.spec.description.metadata.license = 'GPL-3.0 license (https://ultralytics.com/license)'
|
||||
pipeline.spec.description.metadata.userDefined.update({
|
||||
'IoU threshold': str(nms.iouThreshold),
|
||||
'Confidence threshold': str(nms.confidenceThreshold)})
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import sys
|
||||
from ultralytics import yolo # noqa
|
||||
@ -9,7 +10,7 @@ from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, Segmentat
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, callbacks, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.checks import check_yaml, check_imgsz
|
||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
||||
|
||||
# Map head to model, trainer, validator, and predictor classes
|
||||
@ -131,7 +132,7 @@ class YOLO:
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(dict): The prediction results.
|
||||
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
overrides = self.overrides.copy()
|
||||
overrides["conf"] = 0.25
|
||||
@ -161,6 +162,7 @@ class YOLO:
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.data = data or args.data
|
||||
args.task = self.task
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
|
||||
validator = self.ValidatorClass(args=args)
|
||||
validator(model=self.model)
|
||||
|
@ -202,7 +202,7 @@ class BaseTrainer:
|
||||
self.model = DDP(self.model, device_ids=[rank])
|
||||
# Check imgsz
|
||||
gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride)
|
||||
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs)
|
||||
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
|
||||
# Batch size
|
||||
if self.batch_size == -1:
|
||||
if RANK == -1: # single-GPU only, estimate best batch size
|
||||
|
@ -467,6 +467,13 @@ def set_sentry():
|
||||
"""
|
||||
|
||||
def before_send(event, hint):
|
||||
if 'exc_info' in hint:
|
||||
exc_type, exc_value, tb = hint['exc_info']
|
||||
if exc_type in (KeyboardInterrupt, FileNotFoundError) \
|
||||
or 'out of memory' in str(exc_value) \
|
||||
or not sys.argv[0].endswith('yolo'):
|
||||
return None # do not send event
|
||||
|
||||
env = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \
|
||||
'Docker' if is_docker() else platform.system()
|
||||
event['tags'] = {
|
||||
@ -477,6 +484,7 @@ def set_sentry():
|
||||
return event
|
||||
|
||||
if SETTINGS['sync'] and \
|
||||
RANK in {-1, 0} and \
|
||||
not is_pytest_running() and \
|
||||
not is_github_actions_ci() and \
|
||||
((is_pip_package() and not is_git_dir()) or
|
||||
@ -491,7 +499,7 @@ def set_sentry():
|
||||
release=ultralytics.__version__,
|
||||
environment='production', # 'dev' or 'production'
|
||||
before_send=before_send,
|
||||
ignore_errors=[KeyboardInterrupt])
|
||||
ignore_errors=[KeyboardInterrupt, FileNotFoundError])
|
||||
|
||||
# Disable all sentry logging
|
||||
for logger in "sentry_sdk", "sentry_sdk.errors":
|
||||
|
@ -40,7 +40,7 @@ def is_ascii(s) -> bool:
|
||||
return all(ord(c) < 128 for c in s)
|
||||
|
||||
|
||||
def check_imgsz(imgsz, stride=32, min_dim=1, floor=0):
|
||||
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
|
||||
"""
|
||||
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
|
||||
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
|
||||
@ -66,6 +66,13 @@ def check_imgsz(imgsz, stride=32, min_dim=1, floor=0):
|
||||
raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
|
||||
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
|
||||
|
||||
# Apply max_dim
|
||||
if max_dim == 1:
|
||||
LOGGER.warning(f"WARNING ⚠️ 'train' and 'val' imgsz types must be integer, updating to 'imgsz={max(imgsz)}'. "
|
||||
f"'predict' and 'export' imgsz may be list or integer, "
|
||||
f"i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'")
|
||||
imgsz = [max(imgsz)]
|
||||
|
||||
# Make image size a multiple of the stride
|
||||
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user