mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Avoid CUDA round-trip for relevant export formats (#3727)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
c5991d7cd8
commit
135a10f1fa
@ -83,16 +83,23 @@ class AutoBackend(nn.Module):
|
||||
nn_module = isinstance(weights, torch.nn.Module)
|
||||
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, triton = \
|
||||
self._model_type(w)
|
||||
fp16 &= pt or jit or onnx or engine or nn_module or triton # FP16
|
||||
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
||||
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||
stride = 32 # default stride
|
||||
model, metadata = None, None
|
||||
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download_asset(w) # download if not local
|
||||
|
||||
# NOTE: special case: in-memory pytorch model
|
||||
if nn_module:
|
||||
# Set device
|
||||
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||
if cuda and not any([nn_module, pt, jit, engine]): # GPU dataloader formats
|
||||
device = torch.device('cpu')
|
||||
cuda = False
|
||||
|
||||
# Download if not local
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download_asset(w)
|
||||
|
||||
# Load model
|
||||
if nn_module: # in-memory PyTorch model
|
||||
model = weights.to(device)
|
||||
model = model.fuse(verbose=verbose) if fuse else model
|
||||
if hasattr(model, 'kpt_shape'):
|
||||
@ -269,14 +276,13 @@ class AutoBackend(nn.Module):
|
||||
net.load_model(str(w.with_suffix('.bin')))
|
||||
metadata = w.parent / 'metadata.yaml'
|
||||
elif triton: # NVIDIA Triton Inference Server
|
||||
LOGGER.info('Triton Inference Server not supported...')
|
||||
'''
|
||||
TODO:
|
||||
"""TODO
|
||||
check_requirements('tritonclient[all]')
|
||||
from utils.triton import TritonRemoteModel
|
||||
model = TritonRemoteModel(url=w)
|
||||
nhwc = model.runtime.startswith("tensorflow")
|
||||
'''
|
||||
"""
|
||||
raise NotImplementedError('Triton Inference Server is not currently supported.')
|
||||
else:
|
||||
from ultralytics.yolo.engine.exporter import export_formats
|
||||
raise TypeError(f"model='{w}' is not a supported model format. "
|
||||
|
@ -18,7 +18,9 @@ from .build import build_sam
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides={}, _callbacks=None):
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
overrides.update(dict(task='segment', mode='predict', imgsz=1024))
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
# SAM needs retina_masks=True, or the results would be a mess.
|
||||
@ -90,7 +92,7 @@ class Predictor(BasePredictor):
|
||||
of masks and H=W=256. These low resolution logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if all([i is None for i in [bboxes, points, masks]]):
|
||||
if all(i is None for i in [bboxes, points, masks]):
|
||||
return self.generate(im, *args, **kwargs)
|
||||
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)
|
||||
|
||||
@ -284,7 +286,7 @@ class Predictor(BasePredictor):
|
||||
|
||||
return pred_masks, pred_scores, pred_bboxes
|
||||
|
||||
def setup_model(self, model):
|
||||
def setup_model(self, model, verbose=True):
|
||||
"""Set up YOLO model with specified thresholds and device."""
|
||||
device = select_device(self.args.device)
|
||||
if model is None:
|
||||
@ -306,7 +308,7 @@ class Predictor(BasePredictor):
|
||||
# (N, 1, H, W), (N, 1)
|
||||
pred_masks, pred_scores = preds[:2]
|
||||
pred_bboxes = preds[2] if self.segment_all else None
|
||||
names = dict(enumerate([str(i) for i in range(len(pred_masks))]))
|
||||
names = dict(enumerate(str(i) for i in range(len(pred_masks))))
|
||||
results = []
|
||||
for i, masks in enumerate([pred_masks]):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
|
@ -300,17 +300,16 @@ class BasePredictor:
|
||||
|
||||
def setup_model(self, model, verbose=True):
|
||||
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
|
||||
device = select_device(self.args.device, verbose=verbose)
|
||||
model = model or self.args.model
|
||||
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||
self.model = AutoBackend(model,
|
||||
device=device,
|
||||
self.model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, verbose=verbose),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half,
|
||||
fuse=True,
|
||||
verbose=verbose)
|
||||
self.device = device
|
||||
|
||||
self.device = self.model.device # update device
|
||||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def show(self, p):
|
||||
|
@ -109,19 +109,21 @@ class BaseValidator:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
self.run_callbacks('on_val_start')
|
||||
assert model is not None, 'Either trainer or model is needed for validation'
|
||||
self.device = select_device(self.args.device, self.args.batch)
|
||||
self.args.half &= self.device.type != 'cpu'
|
||||
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, data=self.args.data, fp16=self.args.half)
|
||||
model = AutoBackend(model,
|
||||
device=select_device(self.args.device, self.args.batch),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half)
|
||||
self.model = model
|
||||
self.device = model.device # update device
|
||||
self.args.half = model.fp16 # update half
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
||||
if engine:
|
||||
self.args.batch = model.batch_size
|
||||
else:
|
||||
self.device = model.device
|
||||
if not pt and not jit:
|
||||
self.args.batch = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||
elif not pt and not jit:
|
||||
self.args.batch = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||
|
||||
if isinstance(self.args.data, str) and self.args.data.endswith('.yaml'):
|
||||
self.data = check_det_dataset(self.args.data)
|
||||
|
@ -213,7 +213,6 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
prefix = colorstr('red', 'bold', 'requirements:')
|
||||
check_python() # check python version
|
||||
check_torchvision() # check torch-torchvision compatibility
|
||||
file = None
|
||||
if isinstance(requirements, Path): # requirements.txt file
|
||||
file = requirements.resolve()
|
||||
assert file.exists(), f'{prefix} {file} not found, check failed.'
|
||||
@ -225,13 +224,13 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
s = '' # console string
|
||||
pkgs = []
|
||||
for r in requirements:
|
||||
rmin = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo'
|
||||
r_stripped = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo'
|
||||
try:
|
||||
pkg.require(rmin)
|
||||
pkg.require(r_stripped)
|
||||
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
|
||||
try: # attempt to import (slower but more accurate)
|
||||
import importlib
|
||||
importlib.import_module(next(pkg.parse_requirements(rmin)).name)
|
||||
importlib.import_module(next(pkg.parse_requirements(r_stripped)).name)
|
||||
except ImportError:
|
||||
s += f'"{r}" '
|
||||
pkgs.append(r)
|
||||
|
Loading…
x
Reference in New Issue
Block a user