mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
ultralytics 8.0.211
README language links (#6370)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
parent
fa95b31e7e
commit
14c05f0dd1
18
README.md
18
README.md
@ -4,7 +4,7 @@
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
|
||||
</p>
|
||||
|
||||
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/)
|
||||
<br>
|
||||
|
||||
<div>
|
||||
@ -44,7 +44,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">Documentation</div>
|
||||
## Documentation
|
||||
|
||||
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
||||
|
||||
@ -94,11 +94,11 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
path = model.export(format="onnx") # export the model to ONNX format
|
||||
```
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
||||
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Models</div>
|
||||
## Models
|
||||
|
||||
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
||||
|
||||
@ -203,7 +203,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Integrations</div>
|
||||
## Integrations
|
||||
|
||||
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
||||
|
||||
@ -231,14 +231,14 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
||||
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
||||
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
## Ultralytics HUB
|
||||
|
||||
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
|
||||
|
||||
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
||||
|
||||
## <div align="center">Contribute</div>
|
||||
## Contribute
|
||||
|
||||
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
||||
|
||||
@ -247,14 +247,14 @@ We love your input! YOLOv5 and YOLOv8 would not be possible without help from ou
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
||||
|
||||
## <div align="center">License</div>
|
||||
## License
|
||||
|
||||
Ultralytics offers two licensing options to accommodate diverse use cases:
|
||||
|
||||
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
|
||||
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
|
||||
|
||||
## <div align="center">Contact</div>
|
||||
## Contact
|
||||
|
||||
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
|
||||
|
||||
|
@ -4,7 +4,7 @@
|
||||
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
|
||||
</p>
|
||||
|
||||
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/)
|
||||
<br>
|
||||
|
||||
<div>
|
||||
@ -44,7 +44,7 @@
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">文档</div>
|
||||
## 文档
|
||||
|
||||
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
|
||||
|
||||
@ -94,11 +94,11 @@ results = model("https://ultralytics.com/images/bus.jpg") # 对图像进行预
|
||||
success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
```
|
||||
|
||||
[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) 会自动从最新的 Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)中下载。查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。
|
||||
查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">模型</div>
|
||||
## 模型
|
||||
|
||||
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
|
||||
|
||||
@ -202,7 +202,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">集成</div>
|
||||
## 集成
|
||||
|
||||
我们与领先的AI平台的关键整合扩展了Ultralytics产品的功能,增强了数据集标签化、训练、可视化和模型管理等任务。探索Ultralytics如何与[Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic以及[OpenVINO](https://docs.ultralytics.com/integrations/openvino)合作,优化您的AI工作流程。
|
||||
|
||||
@ -230,14 +230,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
| :--------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
|
||||
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
## Ultralytics HUB
|
||||
|
||||
体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
|
||||
|
||||
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
||||
|
||||
## <div align="center">贡献</div>
|
||||
## 贡献
|
||||
|
||||
我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
|
||||
|
||||
@ -246,14 +246,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
||||
|
||||
## <div align="center">许可证</div>
|
||||
## 许可证
|
||||
|
||||
Ultralytics 提供两种许可证选项以适应各种使用场景:
|
||||
|
||||
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件以了解更多细节。
|
||||
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
|
||||
|
||||
## <div align="center">联系方式</div>
|
||||
## 联系方式
|
||||
|
||||
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
|
||||
|
||||
|
@ -77,7 +77,7 @@ Train a detection model for 10 epochs with an initial learning_rate of 0.01:
|
||||
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
```
|
||||
|
||||
You can find more [instructions to use the Ultralytics CLI here](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli).
|
||||
You can find more [instructions to use the Ultralytics CLI here](../quickstart.md#use-ultralytics-with-cli).
|
||||
|
||||
## Quickstart from a Notebook
|
||||
|
||||
@ -114,7 +114,7 @@ pip install onnx>=1.12.0
|
||||
|
||||
Note that we need to use the `source activate yolov8env` for all the %%bash cells, to make sure that the %%bash cell uses environment we want.
|
||||
|
||||
Run some predictions using the [Ultralytics CLI](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli):
|
||||
Run some predictions using the [Ultralytics CLI](../quickstart.md#use-ultralytics-with-cli):
|
||||
|
||||
```bash
|
||||
%%bash
|
||||
@ -122,7 +122,7 @@ source activate yolov8env
|
||||
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
||||
```
|
||||
|
||||
Or with the [Ultralytics Python interface](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-python), for example to train the model:
|
||||
Or with the [Ultralytics Python interface](../quickstart.md#use-ultralytics-with-python), for example to train the model:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
@ -129,4 +129,4 @@ And that's it! Your Conda installation will now use `libmamba` as the solver, wh
|
||||
|
||||
---
|
||||
|
||||
Congratulations! You have successfully set up a Conda environment, installed the Ultralytics package, and are now ready to explore its rich functionalities. Feel free to dive deeper into the [Ultralytics documentation](https://docs.ultralytics.com/) for more advanced tutorials and examples.
|
||||
Congratulations! You have successfully set up a Conda environment, installed the Ultralytics package, and are now ready to explore its rich functionalities. Feel free to dive deeper into the [Ultralytics documentation](../index.md) for more advanced tutorials and examples.
|
||||
|
@ -116,4 +116,4 @@ Replace `/path/on/host` with the directory path on your local machine and `/path
|
||||
|
||||
---
|
||||
|
||||
Congratulations! You're now set up to use Ultralytics with Docker and ready to take advantage of its powerful capabilities. For alternate installation methods, feel free to explore the [Ultralytics quickstart documentation](https://docs.ultralytics.com/quickstart/).
|
||||
Congratulations! You're now set up to use Ultralytics with Docker and ready to take advantage of its powerful capabilities. For alternate installation methods, feel free to explore the [Ultralytics quickstart documentation](../quickstart.md).
|
||||
|
@ -23,7 +23,7 @@ Hyperparameters are high-level, structural settings for the algorithm. They are
|
||||
<img width="640" src="https://user-images.githubusercontent.com/26833433/263858934-4f109a2f-82d9-4d08-8bd6-6fd1ff520bcd.png" alt="Hyperparameter Tuning Visual">
|
||||
</p>
|
||||
|
||||
For a full list of augmentation hyperparameters used in YOLOv8 please refer to [https://docs.ultralytics.com/usage/cfg/#augmentation](https://docs.ultralytics.com/usage/cfg/#augmentation).
|
||||
For a full list of augmentation hyperparameters used in YOLOv8 please refer to the [configurations page](../usage/cfg.md#augmentation).
|
||||
|
||||
### Genetic Evolution and Mutation
|
||||
|
||||
@ -200,7 +200,7 @@ The hyperparameter tuning process in Ultralytics YOLO is simplified yet powerful
|
||||
### Further Reading
|
||||
|
||||
1. [Hyperparameter Optimization in Wikipedia](https://en.wikipedia.org/wiki/Hyperparameter_optimization)
|
||||
2. [YOLOv5 Hyperparameter Evolution Guide](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
|
||||
3. [Efficient Hyperparameter Tuning with Ray Tune and YOLOv8](https://docs.ultralytics.com/integrations/ray-tune/)
|
||||
2. [YOLOv5 Hyperparameter Evolution Guide](../yolov5/tutorials/hyperparameter_evolution.md)
|
||||
3. [Efficient Hyperparameter Tuning with Ray Tune and YOLOv8](../integrations/ray-tune.md)
|
||||
|
||||
For deeper insights, you can explore the `Tuner` class source code and accompanying documentation. Should you have any questions, feature requests, or need further assistance, feel free to reach out to us on [GitHub](https://github.com/ultralytics/ultralytics/issues/new/choose) or [Discord](https://ultralytics.com/discord).
|
||||
|
@ -31,6 +31,6 @@ Here's a compilation of in-depth guides to help you master different aspects of
|
||||
|
||||
We welcome contributions from the community! If you've mastered a particular aspect of Ultralytics YOLO that's not yet covered in our guides, we encourage you to share your expertise. Writing a guide is a great way to give back to the community and help us make our documentation more comprehensive and user-friendly.
|
||||
|
||||
To get started, please read our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for guidelines on how to open up a Pull Request (PR) 🛠️. We look forward to your contributions!
|
||||
To get started, please read our [Contributing Guide](../help/contributing.md) for guidelines on how to open up a Pull Request (PR) 🛠️. We look forward to your contributions!
|
||||
|
||||
Let's work together to make the Ultralytics YOLO ecosystem more robust and versatile 🙏!
|
||||
|
@ -20,7 +20,7 @@ Without further ado, let's dive in!
|
||||
|
||||
## Setup
|
||||
|
||||
- Your annotations should be in the [YOLO detection format](https://docs.ultralytics.com/datasets/detect/).
|
||||
- Your annotations should be in the [YOLO detection format](../datasets/detect/index.md).
|
||||
|
||||
- This guide assumes that annotation files are locally available.
|
||||
|
||||
@ -52,7 +52,7 @@ Without further ado, let's dive in!
|
||||
- The Ultralytics library: `pip install -U ultralytics`. Alternatively, you can clone the official [repo](https://github.com/ultralytics/ultralytics).
|
||||
- Scikit-learn, pandas, and PyYAML: `pip install -U scikit-learn pandas pyyaml`.
|
||||
|
||||
2. Verify that your annotations are in the [YOLO detection format](https://docs.ultralytics.com/datasets/detect/).
|
||||
2. Verify that your annotations are in the [YOLO detection format](../datasets/detect/index.md).
|
||||
|
||||
- For this tutorial, all annotation files are found in the `Fruit-Detection/labels` directory.
|
||||
|
||||
|
@ -14,13 +14,13 @@ This guide walks you through YOLOv8’s deployment options and the essential fac
|
||||
|
||||
## How to Select the Right Deployment Option for Your YOLOv8 Model
|
||||
|
||||
When it's time to deploy your YOLOv8 model, selecting a suitable export format is very important. As outlined in the [Ultralytics YOLOv8 Modes documentation](https://docs.ultralytics.com/modes/export/#usage-examples), the model.export() function allows for converting your trained model into a variety of formats tailored to diverse environments and performance requirements.
|
||||
When it's time to deploy your YOLOv8 model, selecting a suitable export format is very important. As outlined in the [Ultralytics YOLOv8 Modes documentation](../modes/export.md#usage-examples), the model.export() function allows for converting your trained model into a variety of formats tailored to diverse environments and performance requirements.
|
||||
|
||||
The ideal format depends on your model's intended operational context, balancing speed, hardware constraints, and ease of integration. In the following section, we'll take a closer look at each export option, understanding when to choose each one.
|
||||
|
||||
### YOLOv8’s Deployment Options
|
||||
|
||||
Let’s walk through the different YOLOv8 deployment options. For a detailed walkthrough of the export process, visit the [Ultralytics documentation page on exporting](https://docs.ultralytics.com/modes/export/).
|
||||
Let’s walk through the different YOLOv8 deployment options. For a detailed walkthrough of the export process, visit the [Ultralytics documentation page on exporting](../modes/export.md).
|
||||
|
||||
#### PyTorch
|
||||
|
||||
@ -94,7 +94,7 @@ OpenVINO is an Intel toolkit designed to facilitate the deployment of deep learn
|
||||
|
||||
- **Hardware Acceleration**: Tailored for acceleration on Intel hardware, leveraging dedicated instruction sets and hardware features.
|
||||
|
||||
For more details on deployment using OpenVINO, refer to the Ultralytics Integration documentation: [Intel OpenVINO Export](https://docs.ultralytics.com/integrations/openvino/).
|
||||
For more details on deployment using OpenVINO, refer to the Ultralytics Integration documentation: [Intel OpenVINO Export](../integrations/openvino.md).
|
||||
|
||||
#### TensorRT
|
||||
|
||||
@ -260,7 +260,7 @@ ncnn is a high-performance neural network inference framework optimized for the
|
||||
|
||||
## Comparative Analysis of YOLOv8 Deployment Options
|
||||
|
||||
The following table provides a snapshot of the various deployment options available for YOLOv8 models, helping you to assess which may best fit your project needs based on several critical criteria. For an in-depth look at each deployment option's format, please see the [Ultralytics documentation page on export formats](https://docs.ultralytics.com/modes/export/#export-formats).
|
||||
The following table provides a snapshot of the various deployment options available for YOLOv8 models, helping you to assess which may best fit your project needs based on several critical criteria. For an in-depth look at each deployment option's format, please see the [Ultralytics documentation page on export formats](../modes/export.md#export-formats).
|
||||
|
||||
| Deployment Option | Performance Benchmarks | Compatibility and Integration | Community Support and Ecosystem | Case Studies | Maintenance and Updates | Security Considerations | Hardware Acceleration |
|
||||
|-------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------------|------------------------------------|
|
||||
@ -292,7 +292,7 @@ When you're getting started with YOLOv8, having a helpful community and support
|
||||
|
||||
### Official Documentation and Resources
|
||||
|
||||
- **Ultralytics YOLOv8 Docs:** The [official documentation](https://docs.ultralytics.com/) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
- **Ultralytics YOLOv8 Docs:** The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
|
||||
These resources will help you tackle challenges and stay updated on the latest trends and best practices in the YOLOv8 community.
|
||||
|
||||
|
@ -26,7 +26,7 @@ Installation errors can arise due to various reasons, such as incompatible versi
|
||||
|
||||
- Consider using virtual environments to avoid conflicts.
|
||||
|
||||
- Follow the [official installation guide](https://docs.ultralytics.com/quickstart/) step by step.
|
||||
- Follow the [official installation guide](../quickstart.md) step by step.
|
||||
|
||||
Additionally, here are some common installation issues users have encountered, along with their respective solutions:
|
||||
|
||||
@ -263,7 +263,7 @@ Engaging with a community of like-minded individuals can significantly enhance y
|
||||
|
||||
### Official Documentation and Resources
|
||||
|
||||
**Ultralytics YOLOv8 Docs**: The [official documentation](https://docs.ultralytics.com/) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
**Ultralytics YOLOv8 Docs**: The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
|
||||
These resources should provide a solid foundation for troubleshooting and improving your YOLOv8 projects, as well as connecting with others in the YOLOv8 community.
|
||||
|
||||
|
@ -26,7 +26,7 @@ Let’s start by discussing some metrics that are not only important to YOLOv8 b
|
||||
|
||||
## How to Calculate Metrics for YOLOv8 Model
|
||||
|
||||
Now, we can explore [YOLOv8's Validation mode](https://docs.ultralytics.com/modes/val/) that can be used to compute the above discussed evaluation metrics.
|
||||
Now, we can explore [YOLOv8's Validation mode](../modes/val.md) that can be used to compute the above discussed evaluation metrics.
|
||||
|
||||
Using the validation mode is simple. Once you have a trained model, you can invoke the model.val() function. This function will then process the validation dataset and return a variety of performance metrics. But what do these metrics mean? And how should you interpret them?
|
||||
|
||||
@ -152,7 +152,7 @@ Tapping into a community of enthusiasts and experts can amplify your journey wit
|
||||
|
||||
### Official Documentation and Resources:
|
||||
|
||||
- **Ultralytics YOLOv8 Docs:** The [official documentation](https://docs.ultralytics.com/) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
- **Ultralytics YOLOv8 Docs:** The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
|
||||
|
||||
Using these resources will not only guide you through any challenges but also keep you updated with the latest trends and best practices in the YOLOv8 community.
|
||||
|
||||
|
@ -59,7 +59,7 @@ comet_ml.init(project_name="comet-example-yolov8-coco128")
|
||||
|
||||
## Usage
|
||||
|
||||
Before diving into the usage instructions, be sure to check out the range of [YOLOv8 models offered by Ultralytics](https://docs.ultralytics.com/models/). This will help you choose the most appropriate model for your project requirements.
|
||||
Before diving into the usage instructions, be sure to check out the range of [YOLOv8 models offered by Ultralytics](../models/index.md). This will help you choose the most appropriate model for your project requirements.
|
||||
|
||||
!!! example "Usage"
|
||||
|
||||
@ -82,7 +82,7 @@ Before diving into the usage instructions, be sure to check out the range of [YO
|
||||
)
|
||||
```
|
||||
|
||||
After running the training code, Comet ML will create an experiment in your Comet workspace to track the run automatically. You will then be provided with a link to view the detailed logging of your [YOLOv8 model's training](https://docs.ultralytics.com/modes/train/) process.
|
||||
After running the training code, Comet ML will create an experiment in your Comet workspace to track the run automatically. You will then be provided with a link to view the detailed logging of your [YOLOv8 model's training](../modes/train.md) process.
|
||||
|
||||
Comet automatically logs the following data with no additional configuration: metrics such as mAP and loss, hyperparameters, model checkpoints, interactive confusion matrix, and image bounding box predictions.
|
||||
|
||||
@ -170,4 +170,4 @@ Explore [Comet ML's official documentation](https://www.comet.com/docs/v2/integr
|
||||
|
||||
Furthermore, if you're looking to dive deeper into the practical applications of YOLOv8, specifically for image segmentation tasks, this detailed guide on [fine-tuning YOLOv8 with Comet ML](https://www.comet.com/site/blog/fine-tuning-yolov8-for-image-segmentation-with-comet/) offers valuable insights and step-by-step instructions to enhance your model's performance.
|
||||
|
||||
Additionally, to explore other exciting integrations with Ultralytics, check out the [integration guide page](https://docs.ultralytics.com/integrations/), which offers a wealth of resources and information.
|
||||
Additionally, to explore other exciting integrations with Ultralytics, check out the [integration guide page](../integrations/index.md), which offers a wealth of resources and information.
|
@ -16,7 +16,7 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
|
||||
|
||||
## Training Integrations
|
||||
|
||||
- [Comet ML](https://www.comet.ml/): Enhance your model development with Ultralytics by tracking, comparing, and optimizing your machine learning experiments.
|
||||
- [Comet ML](comet.md): Enhance your model development with Ultralytics by tracking, comparing, and optimizing your machine learning experiments.
|
||||
|
||||
- [ClearML](https://clear.ml/): Automate your Ultralytics ML workflows, monitor experiments, and foster team collaboration.
|
||||
|
||||
|
@ -281,4 +281,4 @@ For the Intel® Data Center GPU Flex Series, the OpenVINO format was able to del
|
||||
|
||||
The benchmarks underline the effectiveness of OpenVINO as a tool for deploying deep learning models. By converting models to the OpenVINO format, developers can achieve significant performance improvements, making it easier to deploy these models in real-world applications.
|
||||
|
||||
For more detailed information and instructions on using OpenVINO, refer to the [official OpenVINO documentation](https://docs.openvinotoolkit.org/latest/index.html).
|
||||
For more detailed information and instructions on using OpenVINO, refer to the [official OpenVINO documentation](https://docs.openvino.ai/).
|
||||
|
@ -26,8 +26,8 @@ In the world of machine learning and computer vision, the process of making sens
|
||||
## Real-world Applications
|
||||
|
||||
| Manufacturing | Sports | Safety |
|
||||
|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|
|
||||
|  |  |  |
|
||||
|:-------------------------------------------------:|:----------------------------------------------------:|:-------------------------------------------:|
|
||||
| ![Vehicle Spare Parts Detection][car spare parts] | ![Football Player Detection][football player detect] | ![People Fall Detection][human fall detect] |
|
||||
| Vehicle Spare Parts Detection | Football Player Detection | People Fall Detection |
|
||||
|
||||
## Why Use Ultralytics YOLO for Inference?
|
||||
@ -495,7 +495,7 @@ Here is a table for the `Boxes` class methods and properties, including their na
|
||||
| `xyxyn` | Property (`torch.Tensor`) | Return the boxes in xyxy format normalized by original image size. |
|
||||
| `xywhn` | Property (`torch.Tensor`) | Return the boxes in xywh format normalized by original image size. |
|
||||
|
||||
For more details see the `Boxes` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Boxes` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Boxes).
|
||||
|
||||
### Masks
|
||||
|
||||
@ -528,7 +528,7 @@ Here is a table for the `Masks` class methods and properties, including their na
|
||||
| `xyn` | Property (`torch.Tensor`) | A list of normalized segments represented as tensors. |
|
||||
| `xy` | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |
|
||||
|
||||
For more details see the `Masks` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Masks` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Masks).
|
||||
|
||||
### Keypoints
|
||||
|
||||
@ -562,7 +562,7 @@ Here is a table for the `Keypoints` class methods and properties, including thei
|
||||
| `xy` | Property (`torch.Tensor`) | A list of keypoints in pixel coordinates represented as tensors. |
|
||||
| `conf` | Property (`torch.Tensor`) | Returns confidence values of keypoints if available, else None. |
|
||||
|
||||
For more details see the `Keypoints` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Keypoints` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Keypoints).
|
||||
|
||||
### Probs
|
||||
|
||||
@ -597,7 +597,7 @@ Here's a table summarizing the methods and properties for the `Probs` class:
|
||||
| `top1conf` | Property (`torch.Tensor`) | Confidence of the top 1 class. |
|
||||
| `top5conf` | Property (`torch.Tensor`) | Confidences of the top 5 classes. |
|
||||
|
||||
For more details see the `Probs` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Probs` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Probs).
|
||||
|
||||
## Plotting Results
|
||||
|
||||
@ -713,3 +713,7 @@ Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video
|
||||
```
|
||||
|
||||
This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
|
||||
|
||||
[car spare parts]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1
|
||||
[football player detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442
|
||||
[human fall detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43
|
||||
|
@ -33,8 +33,8 @@ The output from Ultralytics trackers is consistent with standard object detectio
|
||||
## Real-world Applications
|
||||
|
||||
| Transportation | Retail | Aquaculture |
|
||||
|:----------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
||||
|  |  |  |
|
||||
|:----------------------------------:|:--------------------------------:|:----------------------------:|
|
||||
| ![Vehicle Tracking][vehicle track] | ![People Tracking][people track] | ![Fish Tracking][fish track] |
|
||||
| Vehicle Tracking | People Tracking | Fish Tracking |
|
||||
|
||||
## Features at a Glance
|
||||
@ -95,7 +95,7 @@ As can be seen in the above usage, tracking is available for all Detect, Segment
|
||||
|
||||
### Tracking Arguments
|
||||
|
||||
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
|
||||
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](../modes/predict.md#inference-arguments) model page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
@ -352,3 +352,7 @@ By contributing to this section, you help expand the scope of tracking solutions
|
||||
To initiate your contribution, please refer to our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for comprehensive instructions on submitting a Pull Request (PR) 🛠️. We are excited to see what you bring to the table!
|
||||
|
||||
Together, let's enhance the tracking capabilities of the Ultralytics YOLO ecosystem 🙏!
|
||||
|
||||
[vehicle track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/ee6e6038-383b-4f21-ac29-b2a1c7d386ab
|
||||
[people track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/93bb4ee2-77a0-4e4e-8eb6-eb8f527f0527
|
||||
[fish track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a5146d0f-bfa8-4e0a-b7df-3c1446cd8142
|
||||
|
@ -232,7 +232,7 @@ To use a logger, select it from the dropdown menu in the code snippet above and
|
||||
|
||||
### Comet
|
||||
|
||||
[Comet](https://www.comet.ml/site/) is a platform that allows data scientists and developers to track, compare, explain and optimize experiments and models. It provides functionalities such as real-time metrics, code diffs, and hyperparameters tracking.
|
||||
[Comet](../integrations/comet.md) is a platform that allows data scientists and developers to track, compare, explain and optimize experiments and models. It provides functionalities such as real-time metrics, code diffs, and hyperparameters tracking.
|
||||
|
||||
To use Comet:
|
||||
|
||||
|
@ -258,6 +258,7 @@ nav:
|
||||
- Triton Inference Server: guides/triton-inference-server.md
|
||||
- Integrations:
|
||||
- integrations/index.md
|
||||
- Comet ML: integrations/comet.md
|
||||
- OpenVINO: integrations/openvino.md
|
||||
- Ray Tune: integrations/ray-tune.md
|
||||
- Roboflow: integrations/roboflow.md
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Script to fix broken Markdown links and front matter in language-specific directories.
|
||||
Script to fix broken Markdown links and front matter in language-specific directories zh, ko, ja, ru, de, fr, es, pt.
|
||||
|
||||
This script processes markdown files in language-specific directories (like /zh/). It finds Markdown links and checks
|
||||
their existence. If a link is broken and does not exist in the language-specific directory but exists in the /en/
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.210'
|
||||
__version__ = '8.0.211'
|
||||
|
||||
from ultralytics.models import RTDETR, SAM, YOLO
|
||||
from ultralytics.models.fastsam import FastSAM
|
||||
|
Loading…
x
Reference in New Issue
Block a user