mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
ultralytics 8.0.143
add Model
base class (#3934)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
3c787eb080
commit
1a0eb3f099
@ -3,7 +3,7 @@ description: Explore the detailed guide on using the Ultralytics YOLO Engine Mod
|
||||
keywords: Ultralytics, YOLO, engine model, documentation, guide, implementation, training, evaluation
|
||||
---
|
||||
|
||||
## YOLO
|
||||
## Model
|
||||
---
|
||||
### ::: ultralytics.engine.model.YOLO
|
||||
### ::: ultralytics.engine.model.Model
|
||||
<br><br>
|
||||
|
9
docs/reference/models/yolo/model.md
Normal file
9
docs/reference/models/yolo/model.md
Normal file
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Discover the Ultralytics YOLO model class. Learn advanced techniques, tips, and tricks for training.
|
||||
keywords: Ultralytics YOLO, YOLO, YOLO model, Model Training, Machine Learning, Deep Learning, Computer Vision
|
||||
---
|
||||
|
||||
## YOLO
|
||||
---
|
||||
### ::: ultralytics.models.yolo.model.YOLO
|
||||
<br><br>
|
@ -317,6 +317,7 @@ nav:
|
||||
- predict: reference/models/yolo/detect/predict.md
|
||||
- train: reference/models/yolo/detect/train.md
|
||||
- val: reference/models/yolo/detect/val.md
|
||||
- model: reference/models/yolo/model.md
|
||||
- pose:
|
||||
- predict: reference/models/yolo/pose/predict.md
|
||||
- train: reference/models/yolo/pose/train.md
|
||||
|
@ -1,10 +1,9 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.142'
|
||||
__version__ = '8.0.143'
|
||||
|
||||
from ultralytics.engine.model import YOLO
|
||||
from ultralytics.hub import start
|
||||
from ultralytics.models import RTDETR, SAM
|
||||
from ultralytics.models import RTDETR, SAM, YOLO
|
||||
from ultralytics.models.fastsam import FastSAM
|
||||
from ultralytics.models.nas import NAS
|
||||
from ultralytics.utils import SETTINGS as settings
|
||||
|
@ -1,36 +1,23 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import inspect
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.exporter import Exporter
|
||||
from ultralytics.models import yolo # noqa
|
||||
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel, SegmentationModel,
|
||||
attempt_load_one_weight, guess_model_task, nn, yaml_model_load)
|
||||
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
||||
from ultralytics.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks,
|
||||
is_git_dir, yaml_load)
|
||||
from ultralytics.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
|
||||
from ultralytics.utils.downloads import GITHUB_ASSET_STEMS
|
||||
from ultralytics.utils.torch_utils import smart_inference_mode
|
||||
|
||||
# Map head to model, trainer, validator, and predictor classes
|
||||
TASK_MAP = {
|
||||
'classify': [
|
||||
ClassificationModel, yolo.classify.ClassificationTrainer, yolo.classify.ClassificationValidator,
|
||||
yolo.classify.ClassificationPredictor],
|
||||
'detect':
|
||||
[DetectionModel, yolo.detect.DetectionTrainer, yolo.detect.DetectionValidator, yolo.detect.DetectionPredictor],
|
||||
'segment': [
|
||||
SegmentationModel, yolo.segment.SegmentationTrainer, yolo.segment.SegmentationValidator,
|
||||
yolo.segment.SegmentationPredictor],
|
||||
'pose': [PoseModel, yolo.pose.PoseTrainer, yolo.pose.PoseValidator, yolo.pose.PosePredictor]}
|
||||
|
||||
|
||||
class YOLO:
|
||||
class Model:
|
||||
"""
|
||||
YOLO (You Only Look Once) object detection model.
|
||||
A base model class to unify apis for all the models.
|
||||
|
||||
Args:
|
||||
model (str, Path): Path to the model file to load or create.
|
||||
@ -81,13 +68,13 @@ class YOLO:
|
||||
self.predictor = None # reuse predictor
|
||||
self.model = None # model object
|
||||
self.trainer = None # trainer object
|
||||
self.task = None # task type
|
||||
self.ckpt = None # if loaded from *.pt
|
||||
self.cfg = None # if loaded from *.yaml
|
||||
self.ckpt_path = None
|
||||
self.overrides = {} # overrides for trainer object
|
||||
self.metrics = None # validation/training metrics
|
||||
self.session = None # HUB session
|
||||
self.task = task # task type
|
||||
model = str(model).strip() # strip spaces
|
||||
|
||||
# Check if Ultralytics HUB model from https://hub.ultralytics.com
|
||||
@ -109,11 +96,6 @@ class YOLO:
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
@staticmethod
|
||||
def is_hub_model(model):
|
||||
"""Check if the provided model is a HUB model."""
|
||||
@ -122,19 +104,21 @@ class YOLO:
|
||||
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
|
||||
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
|
||||
|
||||
def _new(self, cfg: str, task=None, verbose=True):
|
||||
def _new(self, cfg: str, task=None, model=None, verbose=True):
|
||||
"""
|
||||
Initializes a new model and infers the task type from the model definitions.
|
||||
|
||||
Args:
|
||||
cfg (str): model configuration file
|
||||
task (str | None): model task
|
||||
model (BaseModel): Customized model.
|
||||
verbose (bool): display model info on load
|
||||
"""
|
||||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = task or guess_model_task(cfg_dict)
|
||||
self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
model = model or self.smart_load('model')
|
||||
self.model = model(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.overrides['model'] = self.cfg
|
||||
|
||||
# Below added to allow export from yamls
|
||||
@ -217,7 +201,7 @@ class YOLO:
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
def predict(self, source=None, stream=False, predictor=None, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
@ -225,6 +209,7 @@ class YOLO:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
predictor (BasePredictor): Customized predictor.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
@ -236,6 +221,8 @@ class YOLO:
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
|
||||
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
|
||||
# Check prompts for SAM/FastSAM
|
||||
prompts = kwargs.pop('prompts', None)
|
||||
overrides = self.overrides.copy()
|
||||
overrides['conf'] = 0.25
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
@ -245,12 +232,16 @@ class YOLO:
|
||||
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
|
||||
if not self.predictor:
|
||||
self.task = overrides.get('task') or self.task
|
||||
self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks)
|
||||
predictor = predictor or self.smart_load('predictor')
|
||||
self.predictor = predictor(overrides=overrides, _callbacks=self.callbacks)
|
||||
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
if 'project' in overrides or 'name' in overrides:
|
||||
self.predictor.save_dir = self.predictor.get_save_dir()
|
||||
# Set prompts for SAM/FastSAM
|
||||
if len and hasattr(self.predictor, 'set_prompts'):
|
||||
self.predictor.set_prompts(prompts)
|
||||
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
||||
|
||||
def track(self, source=None, stream=False, persist=False, **kwargs):
|
||||
@ -277,12 +268,13 @@ class YOLO:
|
||||
return self.predict(source=source, stream=stream, **kwargs)
|
||||
|
||||
@smart_inference_mode()
|
||||
def val(self, data=None, **kwargs):
|
||||
def val(self, data=None, validator=None, **kwargs):
|
||||
"""
|
||||
Validate a model on a given dataset.
|
||||
|
||||
Args:
|
||||
data (str): The dataset to validate on. Accepts all formats accepted by yolo
|
||||
validator (BaseValidator): Customized validator.
|
||||
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = self.overrides.copy()
|
||||
@ -295,11 +287,12 @@ class YOLO:
|
||||
self.task = args.task
|
||||
else:
|
||||
args.task = self.task
|
||||
validator = validator or self.smart_load('validator')
|
||||
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
|
||||
validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks)
|
||||
validator = validator(args=args, _callbacks=self.callbacks)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
|
||||
@ -349,11 +342,12 @@ class YOLO:
|
||||
args.task = self.task
|
||||
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
|
||||
|
||||
def train(self, **kwargs):
|
||||
def train(self, trainer=None, **kwargs):
|
||||
"""
|
||||
Trains the model on a given dataset.
|
||||
|
||||
Args:
|
||||
trainer (BaseTrainer, optional): Customized trainer.
|
||||
**kwargs (Any): Any number of arguments representing the training configuration.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
@ -373,7 +367,8 @@ class YOLO:
|
||||
if overrides.get('resume'):
|
||||
overrides['resume'] = self.ckpt_path
|
||||
self.task = overrides.get('task') or self.task
|
||||
self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks)
|
||||
trainer = trainer or self.smart_load('trainer')
|
||||
self.trainer = trainer(overrides=overrides, _callbacks=self.callbacks)
|
||||
if not overrides.get('resume'): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
@ -442,3 +437,27 @@ class YOLO:
|
||||
"""Reset all registered callbacks."""
|
||||
for event in callbacks.default_callbacks.keys():
|
||||
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def smart_load(self, key):
|
||||
"""Load model/trainer/validator/predictor."""
|
||||
try:
|
||||
return self.task_map[self.task][key]
|
||||
except Exception:
|
||||
name = self.__class__.__name__
|
||||
mode = inspect.stack()[1][3] # get the function name.
|
||||
raise NotImplementedError(
|
||||
f'WARNING ⚠️ `{name}` model does not support `{mode}` mode for `{self.task}` task yet.')
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""Map head to model, trainer, validator, and predictor classes
|
||||
|
||||
Returns:
|
||||
task_map (dict)
|
||||
"""
|
||||
raise NotImplementedError('Please provide task map for your model!')
|
||||
|
@ -1,4 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .rtdetr import RTDETR
|
||||
from .sam import SAM
|
||||
from .yolo import YOLO
|
||||
|
||||
__all__ = 'RTDETR', 'SAM' # allow simpler import
|
||||
__all__ = 'YOLO', 'RTDETR', 'SAM' # allow simpler import
|
||||
|
@ -1,111 +1,31 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
FastSAM model interface.
|
||||
|
||||
Usage - Predict:
|
||||
from ultralytics import FastSAM
|
||||
from pathlib import Path
|
||||
|
||||
model = FastSAM('last.pt')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
"""
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.exporter import Exporter
|
||||
from ultralytics.engine.model import YOLO
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir
|
||||
from ultralytics.utils.checks import check_imgsz
|
||||
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
|
||||
from ultralytics.engine.model import Model
|
||||
|
||||
from .predict import FastSAMPredictor
|
||||
from .val import FastSAMValidator
|
||||
|
||||
|
||||
class FastSAM(YOLO):
|
||||
class FastSAM(Model):
|
||||
"""
|
||||
FastSAM model interface.
|
||||
|
||||
Usage - Predict:
|
||||
from ultralytics import FastSAM
|
||||
|
||||
model = FastSAM('last.pt')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
"""
|
||||
|
||||
def __init__(self, model='FastSAM-x.pt'):
|
||||
"""Call the __init__ method of the parent class (YOLO) with the updated default model"""
|
||||
if model == 'FastSAM.pt':
|
||||
model = 'FastSAM-x.pt'
|
||||
super().__init__(model=model)
|
||||
# any additional initialization code for FastSAM
|
||||
assert Path(model).suffix != '.yaml', 'FastSAM models only support pre-trained models.'
|
||||
super().__init__(model=model, task='segment')
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
overrides = self.overrides.copy()
|
||||
overrides['conf'] = 0.25
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
overrides['mode'] = kwargs.get('mode', 'predict')
|
||||
assert overrides['mode'] in ['track', 'predict']
|
||||
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
|
||||
self.predictor = FastSAMPredictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model, verbose=False)
|
||||
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as FastSAM models do not support training."""
|
||||
raise NotImplementedError("FastSAM models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
overrides = dict(task='segment', mode='val')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
validator = FastSAM(args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = dict(task='detect')
|
||||
overrides.update(kwargs)
|
||||
overrides['mode'] = 'export'
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
return Exporter(overrides=args)(model=self.model)
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
@property
|
||||
def task_map(self):
|
||||
return {'segment': {'predictor': FastSAMPredictor, 'validator': FastSAMValidator}}
|
||||
|
@ -13,105 +13,36 @@ from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.exporter import Exporter
|
||||
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
|
||||
from ultralytics.utils.checks import check_imgsz
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
|
||||
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS:
|
||||
class NAS(Model):
|
||||
|
||||
def __init__(self, model='yolo_nas_s.pt') -> None:
|
||||
assert Path(model).suffix != '.yaml', 'YOLO-NAS models only support pre-trained models.'
|
||||
super().__init__(model, task='detect')
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str, task: str):
|
||||
# Load or create new NAS model
|
||||
import super_gradients
|
||||
|
||||
self.predictor = None
|
||||
suffix = Path(model).suffix
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == '.pt':
|
||||
self._load(model)
|
||||
self.model = torch.load(weights)
|
||||
elif suffix == '':
|
||||
self.model = super_gradients.training.models.get(model, pretrained_weights='coco')
|
||||
self.task = 'detect'
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
|
||||
self.model = super_gradients.training.models.get(weights, pretrained_weights='coco')
|
||||
# Standardize model
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = model # for export()
|
||||
self.model.pt_path = weights # for export()
|
||||
self.model.task = 'detect' # for export()
|
||||
self.info()
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str):
|
||||
self.model = torch.load(weights)
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
overrides = dict(conf=0.25, task='detect', mode='predict')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = NASPredictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as NAS models do not support training."""
|
||||
raise NotImplementedError("NAS models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
overrides = dict(task='detect', mode='val')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
validator = NASValidator(args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = dict(task='detect')
|
||||
overrides.update(kwargs)
|
||||
overrides['mode'] = 'export'
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
return Exporter(overrides=args)(model=self.model)
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
@ -123,11 +54,6 @@ class NAS:
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
@property
|
||||
def task_map(self):
|
||||
return {'detect': {'predictor': NASPredictor, 'validator': NASValidator}}
|
||||
|
@ -2,172 +2,29 @@
|
||||
"""
|
||||
RT-DETR model interface
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.exporter import Exporter
|
||||
from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load
|
||||
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, RANK, ROOT, is_git_dir
|
||||
from ultralytics.utils.checks import check_imgsz
|
||||
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.nn.tasks import RTDETRDetectionModel
|
||||
|
||||
from .predict import RTDETRPredictor
|
||||
from .train import RTDETRTrainer
|
||||
from .val import RTDETRValidator
|
||||
|
||||
|
||||
class RTDETR:
|
||||
class RTDETR(Model):
|
||||
"""
|
||||
RTDETR model interface.
|
||||
"""
|
||||
|
||||
def __init__(self, model='rtdetr-l.pt') -> None:
|
||||
if model and not model.endswith('.pt') and not model.endswith('.yaml'):
|
||||
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.')
|
||||
# Load or create new YOLO model
|
||||
self.predictor = None
|
||||
self.ckpt = None
|
||||
suffix = Path(model).suffix
|
||||
if suffix == '.yaml':
|
||||
self._new(model)
|
||||
else:
|
||||
self._load(model)
|
||||
super().__init__(model=model, task='detect')
|
||||
|
||||
def _new(self, cfg: str, verbose=True):
|
||||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = 'detect'
|
||||
self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) # build model
|
||||
|
||||
# Below added to allow export from YAMLs
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
self.model.task = self.task
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str):
|
||||
self.model, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
self.task = self.model.args['task']
|
||||
|
||||
@smart_inference_mode()
|
||||
def load(self, weights='yolov8n.pt'):
|
||||
"""
|
||||
Transfers parameters with matching names and shapes from 'weights' to model.
|
||||
"""
|
||||
if isinstance(weights, (str, Path)):
|
||||
weights, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.model.load(weights)
|
||||
return self
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
overrides = dict(conf=0.25, task='detect', mode='predict')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = RTDETRPredictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""
|
||||
Trains the model on a given dataset.
|
||||
|
||||
Args:
|
||||
**kwargs (Any): Any number of arguments representing the training configuration.
|
||||
"""
|
||||
overrides = dict(task='detect', mode='train')
|
||||
overrides.update(kwargs)
|
||||
overrides['deterministic'] = False
|
||||
if not overrides.get('data'):
|
||||
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
|
||||
if overrides.get('resume'):
|
||||
overrides['resume'] = self.ckpt_path
|
||||
self.task = overrides.get('task') or self.task
|
||||
self.trainer = RTDETRTrainer(overrides=overrides)
|
||||
if not overrides.get('resume'): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
self.trainer.train()
|
||||
# Update model and cfg after training
|
||||
if RANK in (-1, 0):
|
||||
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
|
||||
self.overrides = self.model.args
|
||||
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
overrides = dict(task='detect', mode='val')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
validator = RTDETRValidator(args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
def info(self, verbose=True):
|
||||
"""Get model info"""
|
||||
return model_info(self.model, verbose=verbose)
|
||||
|
||||
def _check_is_pytorch_model(self):
|
||||
"""
|
||||
Raises TypeError is model is not a PyTorch model
|
||||
"""
|
||||
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
|
||||
pt_module = isinstance(self.model, nn.Module)
|
||||
if not (pt_module or pt_str):
|
||||
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
|
||||
f'PyTorch models can be used to train, val, predict and export, i.e. '
|
||||
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
||||
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
||||
|
||||
def fuse(self):
|
||||
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
|
||||
self._check_is_pytorch_model()
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = dict(task='detect')
|
||||
overrides.update(kwargs)
|
||||
overrides['mode'] = 'export'
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
return Exporter(overrides=args)(model=self.model)
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
@property
|
||||
def task_map(self):
|
||||
return {
|
||||
'detect': {
|
||||
'predictor': RTDETRPredictor,
|
||||
'validator': RTDETRValidator,
|
||||
'trainer': RTDETRTrainer,
|
||||
'model': RTDETRDetectionModel}}
|
||||
|
@ -3,51 +3,38 @@
|
||||
SAM model interface
|
||||
"""
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils.torch_utils import model_info
|
||||
|
||||
from .build import build_sam
|
||||
from .predict import Predictor
|
||||
|
||||
|
||||
class SAM:
|
||||
class SAM(Model):
|
||||
"""
|
||||
SAM model interface.
|
||||
"""
|
||||
|
||||
def __init__(self, model='sam_b.pt') -> None:
|
||||
if model and not model.endswith('.pt') and not model.endswith('.pth'):
|
||||
# Should raise AssertionError instead?
|
||||
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint')
|
||||
self.model = build_sam(model)
|
||||
self.task = 'segment' # required
|
||||
self.predictor = None # reuse predictor
|
||||
super().__init__(model=model, task='segment')
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
self.model = build_sam(weights)
|
||||
|
||||
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Predicts and returns segmentation masks for given image or video source."""
|
||||
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = Predictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream, bboxes=bboxes, points=points, labels=labels)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as SAM models do not support training."""
|
||||
raise NotImplementedError("SAM models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
raise NotImplementedError("SAM models don't support validation")
|
||||
kwargs.update(overrides)
|
||||
prompts = dict(bboxes=bboxes, points=points, labels=labels)
|
||||
super().predict(source, stream, prompts=prompts, **kwargs)
|
||||
|
||||
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
@ -57,3 +44,7 @@ class SAM:
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
return {'segment': {'predictor': Predictor}}
|
||||
|
@ -28,6 +28,8 @@ class Predictor(BasePredictor):
|
||||
# Args for set_image
|
||||
self.im = None
|
||||
self.features = None
|
||||
# Args for set_prompts
|
||||
self.prompts = {}
|
||||
# Args for segment everything
|
||||
self.segment_all = False
|
||||
|
||||
@ -92,6 +94,10 @@ class Predictor(BasePredictor):
|
||||
of masks and H=W=256. These low resolution logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
# Get prompts from self.prompts first
|
||||
bboxes = self.prompts.pop('bboxes', bboxes)
|
||||
points = self.prompts.pop('points', points)
|
||||
masks = self.prompts.pop('masks', masks)
|
||||
if all(i is None for i in [bboxes, points, masks]):
|
||||
return self.generate(im, *args, **kwargs)
|
||||
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)
|
||||
@ -348,6 +354,10 @@ class Predictor(BasePredictor):
|
||||
self.im = im
|
||||
break
|
||||
|
||||
def set_prompts(self, prompts):
|
||||
"""Set prompts in advance."""
|
||||
self.prompts = prompts
|
||||
|
||||
def reset_image(self):
|
||||
self.im = None
|
||||
self.features = None
|
||||
|
@ -2,4 +2,6 @@
|
||||
|
||||
from ultralytics.models.yolo import classify, detect, pose, segment
|
||||
|
||||
__all__ = 'classify', 'segment', 'detect', 'pose'
|
||||
from .model import YOLO
|
||||
|
||||
__all__ = 'classify', 'segment', 'detect', 'pose', 'YOLO'
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from copy import copy
|
||||
|
||||
import numpy as np
|
||||
|
36
ultralytics/models/yolo/model.py
Normal file
36
ultralytics/models/yolo/model.py
Normal file
@ -0,0 +1,36 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.models import yolo # noqa
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, PoseModel, SegmentationModel
|
||||
|
||||
|
||||
class YOLO(Model):
|
||||
"""
|
||||
YOLO (You Only Look Once) object detection model.
|
||||
"""
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""Map head to model, trainer, validator, and predictor classes"""
|
||||
return {
|
||||
'classify': {
|
||||
'model': ClassificationModel,
|
||||
'trainer': yolo.classify.ClassificationTrainer,
|
||||
'validator': yolo.classify.ClassificationValidator,
|
||||
'predictor': yolo.classify.ClassificationPredictor, },
|
||||
'detect': {
|
||||
'model': DetectionModel,
|
||||
'trainer': yolo.detect.DetectionTrainer,
|
||||
'validator': yolo.detect.DetectionValidator,
|
||||
'predictor': yolo.detect.DetectionPredictor, },
|
||||
'segment': {
|
||||
'model': SegmentationModel,
|
||||
'trainer': yolo.segment.SegmentationTrainer,
|
||||
'validator': yolo.segment.SegmentationValidator,
|
||||
'predictor': yolo.segment.SegmentationPredictor, },
|
||||
'pose': {
|
||||
'model': PoseModel,
|
||||
'trainer': yolo.pose.PoseTrainer,
|
||||
'validator': yolo.pose.PoseValidator,
|
||||
'predictor': yolo.pose.PosePredictor, }, }
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from copy import copy
|
||||
|
||||
from ultralytics.models import yolo
|
||||
|
Loading…
x
Reference in New Issue
Block a user