mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-22 21:04:21 +08:00
Added video output support for gradio (#113)
added video output support for gradio --------- Co-authored-by: Sencer Yücel <sencer.yucel@turkai.com> Co-authored-by: wa22 <wa22@mails.tsinghua.edu.cn>
This commit is contained in:
parent
1539b5a678
commit
1cfe7a4e13
99
app.py
99
app.py
@ -1,30 +1,60 @@
|
||||
import PIL.Image as Image
|
||||
import gradio as gr
|
||||
|
||||
import cv2
|
||||
import tempfile
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
def predict_image(img, model_id, image_size, conf_threshold):
|
||||
|
||||
def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
||||
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
||||
results = model.predict(
|
||||
source=img,
|
||||
conf=conf_threshold,
|
||||
show_labels=True,
|
||||
show_conf=True,
|
||||
imgsz=image_size,
|
||||
)
|
||||
if image:
|
||||
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
||||
annotated_image = results[0].plot()
|
||||
return annotated_image[:, :, ::-1], None
|
||||
else:
|
||||
video_path = tempfile.mktemp(suffix=".webm")
|
||||
with open(video_path, "wb") as f:
|
||||
with open(video, "rb") as g:
|
||||
f.write(g.read())
|
||||
|
||||
for r in results:
|
||||
im_array = r.plot()
|
||||
im = Image.fromarray(im_array[..., ::-1])
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
|
||||
output_video_path = tempfile.mktemp(suffix=".webm")
|
||||
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
|
||||
|
||||
while cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
|
||||
annotated_frame = results[0].plot()
|
||||
out.write(annotated_frame)
|
||||
|
||||
cap.release()
|
||||
out.release()
|
||||
|
||||
return None, output_video_path
|
||||
|
||||
|
||||
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
|
||||
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
|
||||
return annotated_image
|
||||
|
||||
return im
|
||||
|
||||
def app():
|
||||
with gr.Blocks():
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
image = gr.Image(type="pil", label="Image")
|
||||
|
||||
image = gr.Image(type="pil", label="Image", visible=True)
|
||||
video = gr.Video(label="Video", visible=False)
|
||||
input_type = gr.Radio(
|
||||
choices=["Image", "Video"],
|
||||
value="Image",
|
||||
label="Input Type",
|
||||
)
|
||||
model_id = gr.Dropdown(
|
||||
label="Model",
|
||||
choices=[
|
||||
@ -54,17 +84,34 @@ def app():
|
||||
yolov10_infer = gr.Button(value="Detect Objects")
|
||||
|
||||
with gr.Column():
|
||||
output_image = gr.Image(type="pil", label="Annotated Image")
|
||||
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
||||
output_video = gr.Video(label="Annotated Video", visible=False)
|
||||
|
||||
def update_visibility(input_type):
|
||||
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
||||
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
||||
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
||||
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
||||
|
||||
return image, video, output_image, output_video
|
||||
|
||||
input_type.change(
|
||||
fn=update_visibility,
|
||||
inputs=[input_type],
|
||||
outputs=[image, video, output_image, output_video],
|
||||
)
|
||||
|
||||
def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
|
||||
if input_type == "Image":
|
||||
return yolov10_inference(image, None, model_id, image_size, conf_threshold)
|
||||
else:
|
||||
return yolov10_inference(None, video, model_id, image_size, conf_threshold)
|
||||
|
||||
|
||||
yolov10_infer.click(
|
||||
fn=predict_image,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
image_size,
|
||||
conf_threshold,
|
||||
],
|
||||
outputs=[output_image],
|
||||
fn=run_inference,
|
||||
inputs=[image, video, model_id, image_size, conf_threshold, input_type],
|
||||
outputs=[output_image, output_video],
|
||||
)
|
||||
|
||||
gr.Examples(
|
||||
@ -82,7 +129,7 @@ def app():
|
||||
0.25,
|
||||
],
|
||||
],
|
||||
fn=predict_image,
|
||||
fn=yolov10_inference_for_examples,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
|
Loading…
x
Reference in New Issue
Block a user