added pgt_coeff to argparser

This commit is contained in:
nielseni6 2024-11-01 11:19:22 -04:00
parent 21e660fde9
commit 1ef6cbcec5

View File

@ -10,34 +10,24 @@ import torch
def main(args):
model = YOLOv10PGT('yolov10n.pt')
model.train(
data=args.data_yaml,
epochs=args.epochs,
batch=args.batch_size,
# amp=False,
pgt_coeff=3.0,
# cfg='pgt_train.yaml', # Load and train model with the config file
)
if args.pgt_coeff is None:
model.train(data=args.data_yaml, epochs=args.epochs, batch=args.batch_size)
else:
model.train(
data=args.data_yaml,
epochs=args.epochs,
batch=args.batch_size,
# amp=False,
pgt_coeff=args.pgt_coeff,
# cfg='pgt_train.yaml', # Load and train model with the config file
)
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# model = YOLOv10('yolov10n.pt', task='segment')
# model = YOLOv10('yolov10n.pt', task='segment')
# args_dict = dict(
# model='yolov10n.pt',
# data=args.data_yaml,
# epochs=args.epochs, batch=args.batch_size,
# # pgt_coeff=5.0,
# # cfg = 'pgt_train.yaml', # This can be edited for full control of the training process
# )
# trainer = PGTSegmentationTrainer(overrides=args_dict)
# trainer.train(
# # debug=True,
# # args = dict(pgt_coeff=0.1), # Should add later to config
# )
# Create a directory to save model weights if it doesn't exist
model_weights_dir = 'model_weights'
@ -63,6 +53,7 @@ if __name__ == "__main__":
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
parser.add_argument('--data_yaml', type=str, default='coco.yaml', help='Path to the data YAML file')
parser.add_argument('--pgt_coeff', type=float, default=None, help='Coefficient for PGT')
args = parser.parse_args()
# Set CUDA device (only needed for multi-gpu machines)