mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
New MLFLOW_KEEP_RUN_ACTIVE
flag for enhanced MLflow run management (#8808)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
af6c02c39b
commit
1f9667fff2
1
.gitignore
vendored
1
.gitignore
vendored
@ -50,6 +50,7 @@ coverage.xml
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
mlruns/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
|
@ -29,6 +29,34 @@ def test_mlflow():
|
||||
SETTINGS["mlflow"] = True
|
||||
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu")
|
||||
|
||||
@pytest.mark.skipif(not check_requirements('mlflow', install=False), reason='mlflow not installed')
|
||||
def test_mlflow_keep_run_active():
|
||||
import os
|
||||
import mlflow
|
||||
"""Test training with MLflow tracking enabled."""
|
||||
SETTINGS['mlflow'] = True
|
||||
run_name = 'Test Run'
|
||||
os.environ['MLFLOW_RUN'] = run_name
|
||||
|
||||
# Test with MLFLOW_KEEP_RUN_ACTIVE=True
|
||||
os.environ['MLFLOW_KEEP_RUN_ACTIVE'] = 'True'
|
||||
YOLO('yolov8n-cls.yaml').train(data='imagenet10', imgsz=32, epochs=1, plots=False, device='cpu')
|
||||
status = mlflow.active_run().info.status
|
||||
assert status == 'RUNNING', "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True"
|
||||
|
||||
run_id = mlflow.active_run().info.run_id
|
||||
|
||||
# Test with MLFLOW_KEEP_RUN_ACTIVE=False
|
||||
os.environ['MLFLOW_KEEP_RUN_ACTIVE'] = 'False'
|
||||
YOLO('yolov8n-cls.yaml').train(data='imagenet10', imgsz=32, epochs=1, plots=False, device='cpu')
|
||||
status = mlflow.get_run(run_id=run_id).info.status
|
||||
assert status == 'FINISHED', "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False"
|
||||
|
||||
# Test with MLFLOW_KEEP_RUN_ACTIVE not set
|
||||
os.environ.pop('MLFLOW_KEEP_RUN_ACTIVE', None)
|
||||
YOLO('yolov8n-cls.yaml').train(data='imagenet10', imgsz=32, epochs=1, plots=False, device='cpu')
|
||||
status = mlflow.get_run(run_id=run_id).info.status
|
||||
assert status == 'FINISHED', "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set"
|
||||
|
||||
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed")
|
||||
def test_triton():
|
||||
|
@ -58,6 +58,7 @@ def on_pretrain_routine_end(trainer):
|
||||
MLFLOW_TRACKING_URI: The URI for MLflow tracking. If not set, defaults to 'runs/mlflow'.
|
||||
MLFLOW_EXPERIMENT_NAME: The name of the MLflow experiment. If not set, defaults to trainer.args.project.
|
||||
MLFLOW_RUN: The name of the MLflow run. If not set, defaults to trainer.args.name.
|
||||
MLFLOW_KEEP_RUN_ACTIVE: Boolean indicating whether to keep the MLflow run active after the end of the training phase.
|
||||
"""
|
||||
global mlflow
|
||||
|
||||
@ -107,8 +108,13 @@ def on_train_end(trainer):
|
||||
for f in trainer.save_dir.glob("*"): # log all other files in save_dir
|
||||
if f.suffix in {".png", ".jpg", ".csv", ".pt", ".yaml"}:
|
||||
mlflow.log_artifact(str(f))
|
||||
|
||||
keep_run_active = os.environ.get("MLFLOW_KEEP_RUN_ACTIVE", "False").lower() in ("true")
|
||||
if keep_run_active:
|
||||
LOGGER.info(f"{PREFIX}mlflow run still alive, remember to close it using mlflow.end_run()")
|
||||
else:
|
||||
mlflow.end_run()
|
||||
LOGGER.debug(f"{PREFIX}mlflow run ended")
|
||||
|
||||
LOGGER.info(
|
||||
f"{PREFIX}results logged to {mlflow.get_tracking_uri()}\n"
|
||||
f"{PREFIX}disable with 'yolo settings mlflow=False'"
|
||||
|
Loading…
x
Reference in New Issue
Block a user