diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml
index fe129752..02e4fce5 100644
--- a/.github/workflows/ci.yaml
+++ b/.github/workflows/ci.yaml
@@ -29,7 +29,7 @@ jobs:
           - os: ubuntu-latest
             python-version: '3.8'  # torch 1.7.0 requires python >=3.6, <=3.8
             model: yolov8n
-            torch: '1.7.0'  # min torch version CI https://pypi.org/project/torchvision/
+            torch: '1.8.0'  # min torch version CI https://pypi.org/project/torchvision/
     steps:
       - uses: actions/checkout@v3
       - uses: actions/setup-python@v4
@@ -48,13 +48,12 @@ jobs:
       - name: Install requirements
         run: |
           python -m pip install --upgrade pip wheel
-          if [ "${{ matrix.torch }}" == "1.7.0" ]; then
-              pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu
+          if [ "${{ matrix.torch }}" == "1.8.0" ]; then
+              pip install -e . torch==1.8.0 torchvision==0.9.0 onnx openvino-dev>=2022.3 pytest --extra-index-url https://download.pytorch.org/whl/cpu
           else
-              pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
+              pip install -e . onnx openvino-dev>=2022.3 pytest --extra-index-url https://download.pytorch.org/whl/cpu
           fi
           # pip install ultralytics (production)
-          pip install -e . pytest
         shell: bash  # for Windows compatibility
       - name: Check environment
         run: |
diff --git a/.github/workflows/cla.yml b/.github/workflows/cla.yml
index f6992602..77d7b641 100644
--- a/.github/workflows/cla.yml
+++ b/.github/workflows/cla.yml
@@ -18,7 +18,7 @@ jobs:
     steps:
       - name: "CLA Assistant"
         if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
-        uses: contributor-assistant/github-action@v2.2.1
+        uses: contributor-assistant/github-action@v2.3.0
         env:
           GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
           # must be repository secret token
diff --git a/README.md b/README.md
index 3cdc743d..d034e547 100644
--- a/README.md
+++ b/README.md
@@ -114,8 +114,8 @@ We are still working on several parts of YOLOv8! We aim to have these completed
 to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
 will submit to [arxiv.org](https://arxiv.org) once complete.
 
-- [ ] TensorFlow exports
-- [ ] DDP resume
+- [x] TensorFlow exports
+- [x] DDP resume
 - [ ] [arxiv.org](https://arxiv.org) paper
 
 </details>
@@ -246,8 +246,7 @@ YOLOv8 is available under two different licenses:
 
 ## <div align="center">Contact</div>
 
-For YOLOv8 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues).
-For professional support please [Contact Us](https://ultralytics.com/contact).
+For YOLOv8 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues) or the [Ultralytics Community Forum](https://community.ultralytics.com/).
 
 <br>
 <div align="center">
diff --git a/README.zh-CN.md b/README.zh-CN.md
index e2ee93fc..9931f789 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -101,8 +101,8 @@ success = model.export(format="onnx")  # 将模型导出为 ONNX 格式
 
 我们仍在努力完善 YOLOv8 的几个部分!我们的目标是尽快完成这些工作,使 YOLOv8 的功能设置达到YOLOv5 的水平,包括对所有相同格式的导出和推理。我们还在写一篇 YOLOv8 的论文,一旦完成,我们将提交给 [arxiv.org](https://arxiv.org)。
 
-- [ ] TensorFlow 导出
-- [ ] DDP 恢复训练
+- [x] TensorFlow 导出
+- [x] DDP 恢复训练
 - [ ] [arxiv.org](https://arxiv.org) 论文
 
 </details>
@@ -214,7 +214,7 @@ success = model.export(format="onnx")  # 将模型导出为 ONNX 格式
 
 ## <div align="center">联系我们</div>
 
-若发现 YOLOv8 的 Bug 或有功能需求,请访问 [GitHub 问题](https://github.com/ultralytics/ultralytics/issues)。如需专业支持,请 [联系我们](https://ultralytics.com/contact)。
+请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues) 或 [Ultralytics Community Forum](https://community.ultralytis.com) 以报告 YOLOv8 错误和请求功能。
 
 <br>
 <div align="center">
diff --git a/docs/SECURITY.md b/docs/SECURITY.md
new file mode 100644
index 00000000..5833ea78
--- /dev/null
+++ b/docs/SECURITY.md
@@ -0,0 +1,17 @@
+At [Ultralytics](https://ultralytics.com), the security of our users' data and systems is of utmost importance. To ensure the safety and security of our [open-source projects](https://github.com/ultralytics), we have implemented several measures to detect and prevent security vulnerabilities.
+
+[![ultralytics](https://snyk.io/advisor/python/ultralytics/badge.svg)](https://snyk.io/advisor/python/ultralytics)
+
+## Snyk Scanning
+
+We use [Snyk](https://snyk.io/advisor/python/ultralytics) to regularly scan the YOLOv8 repository for vulnerabilities and security issues. Our goal is to identify and remediate any potential threats as soon as possible, to minimize any risks to our users.
+
+## GitHub CodeQL Scanning
+
+In addition to our Snyk scans, we also use GitHub's [CodeQL](https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql) scans to proactively identify and address security vulnerabilities.
+
+## Reporting Security Issues
+
+If you suspect or discover a security vulnerability in the YOLOv8 repository, please let us know immediately. You can reach out to us directly via our [contact form](https://ultralytics.com/contact) or via [security@ultralytics.com](mailto:security@ultralytics.com). Our security team will investigate and respond as soon as possible.
+
+We appreciate your help in keeping the YOLOv8 repository secure and safe for everyone.
diff --git a/mkdocs.yml b/mkdocs.yml
index 2117aa8c..95957f2f 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -122,3 +122,4 @@ nav:
           - Results: reference/results.md
       - ultralytics.nn: reference/nn.md
       - Operations: reference/ops.md
+  - Security: SECURITY.md
diff --git a/tests/test_cli.py b/tests/test_cli.py
index 10db4069..f5941812 100644
--- a/tests/test_cli.py
+++ b/tests/test_cli.py
@@ -48,18 +48,18 @@ def test_val_classify():
 
 # Predict checks -------------------------------------------------------------------------------------------------------
 def test_predict_detect():
-    run(f"yolo predict detect model={MODEL}.pt source={ROOT / 'assets'} imgsz=32")
-    run(f"yolo predict detect model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32")
-    run(f"yolo predict detect model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape.mov imgsz=32")
-    run(f"yolo predict detect model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait.mov imgsz=32")
+    run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32")
+    run(f"yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32")
+    run(f"yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32")
+    run(f"yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32")
 
 
 def test_predict_segment():
-    run(f"yolo predict segment model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32")
+    run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32")
 
 
 def test_predict_classify():
-    run(f"yolo predict classify model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32")
+    run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32")
 
 
 # Export checks --------------------------------------------------------------------------------------------------------
diff --git a/tests/test_python.py b/tests/test_python.py
index d0c11d54..a358e409 100644
--- a/tests/test_python.py
+++ b/tests/test_python.py
@@ -18,7 +18,6 @@ SOURCE = ROOT / 'assets/bus.jpg'
 
 def test_model_forward():
     model = YOLO(CFG)
-    model.predict(SOURCE)
     model(SOURCE)
 
 
@@ -38,11 +37,10 @@ def test_model_fuse():
 
 def test_predict_dir():
     model = YOLO(MODEL)
-    model.predict(source=ROOT / "assets")
+    model(source=ROOT / "assets")
 
 
 def test_predict_img():
-
     model = YOLO(MODEL)
     img = Image.open(str(SOURCE))
     output = model(source=img, save=True, verbose=True)  # PIL
@@ -106,22 +104,26 @@ def test_export_torchscript():
     print(export_formats())
 
     model = YOLO(MODEL)
-    model.export(format='torchscript')
+    f = model.export(format='torchscript')
+    YOLO(f)(SOURCE)  # exported model inference
 
 
 def test_export_onnx():
     model = YOLO(MODEL)
-    model.export(format='onnx')
+    f = model.export(format='onnx')
+    YOLO(f)(SOURCE)  # exported model inference
 
 
 def test_export_openvino():
     model = YOLO(MODEL)
-    model.export(format='openvino')
+    f = model.export(format='openvino')
+    YOLO(f)(SOURCE)  # exported model inference
 
 
 def test_export_coreml():
     model = YOLO(MODEL)
     model.export(format='coreml')
+    # YOLO(f)(SOURCE)  # model prediction only supported on macOS
 
 
 def test_export_paddle(enabled=False):
@@ -140,6 +142,7 @@ def test_workflow():
     model = YOLO(MODEL)
     model.train(data="coco8.yaml", epochs=1, imgsz=32)
     model.val()
+    print(model.metrics)
     model.predict(SOURCE)
     model.export(format="onnx", opset=12)  # export a model to ONNX format
 
@@ -164,6 +167,3 @@ def test_predict_callback_and_setup():
         print('test_callback', bs)
         boxes = result.boxes  # Boxes object for bbox outputs
         print(boxes)
-
-
-test_predict_img()
diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py
index 6dfa9936..325c0c93 100644
--- a/ultralytics/__init__.py
+++ b/ultralytics/__init__.py
@@ -1,6 +1,6 @@
 # Ultralytics YOLO 🚀, GPL-3.0 license
 
-__version__ = "8.0.35"
+__version__ = "8.0.36"
 
 from ultralytics.yolo.engine.model import YOLO
 from ultralytics.yolo.utils.checks import check_yolo as checks
diff --git a/ultralytics/hub/__init__.py b/ultralytics/hub/__init__.py
index 935c84aa..ee037554 100644
--- a/ultralytics/hub/__init__.py
+++ b/ultralytics/hub/__init__.py
@@ -5,12 +5,12 @@ import requests
 from ultralytics.hub.auth import Auth
 from ultralytics.hub.session import HubTrainingSession
 from ultralytics.hub.utils import split_key
-from ultralytics.yolo.engine.exporter import export_formats
+from ultralytics.yolo.engine.exporter import EXPORT_FORMATS_LIST
 from ultralytics.yolo.engine.model import YOLO
 from ultralytics.yolo.utils import LOGGER, PREFIX, emojis
 
 # Define all export formats
-EXPORT_FORMATS = list(export_formats()['Argument'][1:]) + ["ultralytics_tflite", "ultralytics_coreml"]
+EXPORT_FORMATS_HUB = EXPORT_FORMATS_LIST + ["ultralytics_tflite", "ultralytics_coreml"]
 
 
 def start(key=""):
@@ -69,7 +69,7 @@ def reset_model(key=""):
 
 def export_model(key="", format="torchscript"):
     # Export a model to all formats
-    assert format in EXPORT_FORMATS, f"Unsupported export format '{format}' passed, valid formats are {EXPORT_FORMATS}"
+    assert format in EXPORT_FORMATS_HUB, f"Unsupported export format '{format}', valid formats are {EXPORT_FORMATS_HUB}"
     api_key, model_id = split_key(key)
     r = requests.post("https://api.ultralytics.com/export",
                       json={
@@ -82,7 +82,7 @@ def export_model(key="", format="torchscript"):
 
 def get_export(key="", format="torchscript"):
     # Get an exported model dictionary with download URL
-    assert format in EXPORT_FORMATS, f"Unsupported export format '{format}' passed, valid formats are {EXPORT_FORMATS}"
+    assert format in EXPORT_FORMATS_HUB, f"Unsupported export format '{format}', valid formats are {EXPORT_FORMATS_HUB}"
     api_key, model_id = split_key(key)
     r = requests.post("https://api.ultralytics.com/get-export",
                       json={
diff --git a/ultralytics/nn/autobackend.py b/ultralytics/nn/autobackend.py
index 5a2bd4fb..39883be1 100644
--- a/ultralytics/nn/autobackend.py
+++ b/ultralytics/nn/autobackend.py
@@ -193,7 +193,7 @@ class AutoBackend(nn.Module):
                 from tflite_runtime.interpreter import Interpreter, load_delegate
             except ImportError:
                 import tensorflow as tf
-                Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
+                Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
             if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
                 LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
                 delegate = {
@@ -232,8 +232,10 @@ class AutoBackend(nn.Module):
             nhwc = model.runtime.startswith("tensorflow")
             '''
         else:
-            raise NotImplementedError(f"ERROR: '{w}' is not a supported format. For supported formats see "
-                                      f"https://docs.ultralytics.com/reference/nn/")
+            from ultralytics.yolo.engine.exporter import EXPORT_FORMATS_TABLE
+            raise TypeError(f"model='{w}' is not a supported model format. "
+                            "See https://docs.ultralytics.com/tasks/detection/#export for help."
+                            f"\n\n{EXPORT_FORMATS_TABLE}")
 
         # class names
         if 'names' not in locals():  # names missing
diff --git a/ultralytics/nn/tasks.py b/ultralytics/nn/tasks.py
index f0d80c4f..c670cc9d 100644
--- a/ultralytics/nn/tasks.py
+++ b/ultralytics/nn/tasks.py
@@ -356,7 +356,7 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
         model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model
 
         # Model compatibility updates
-        model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
+        model.args = args  # attach args to model
         model.pt_path = weights  # attach *.pt file path to model
         model.task = guess_model_task(model)
         if not hasattr(model, 'stride'):
diff --git a/ultralytics/yolo/cfg/__init__.py b/ultralytics/yolo/cfg/__init__.py
index 404d4f75..eadde3e6 100644
--- a/ultralytics/yolo/cfg/__init__.py
+++ b/ultralytics/yolo/cfg/__init__.py
@@ -12,8 +12,8 @@ from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_P
                                     IterableSimpleNamespace, __version__, checks, colorstr, yaml_load, yaml_print)
 
 CLI_HELP_MSG = \
-    """
-    YOLOv8 'yolo' CLI commands use the following syntax:
+    f"""
+    Arguments received: {str(['yolo'] + sys.argv[1:])}. Note that Ultralytics 'yolo' commands use the following syntax:
 
         yolo TASK MODE ARGS
 
@@ -64,9 +64,7 @@ CFG_BOOL_KEYS = {
 
 def cfg2dict(cfg):
     """
-    Convert a configuration object to a dictionary.
-
-    This function converts a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
+    Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
 
     Inputs:
         cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.
@@ -143,8 +141,9 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
     if mismatched:
         string = ''
         for x in mismatched:
-            matches = get_close_matches(x, base)
-            match_str = f"Similar arguments are {matches}." if matches else ''
+            matches = get_close_matches(x, base)  # key list
+            matches = [f"{k}={DEFAULT_CFG_DICT[k]}" if DEFAULT_CFG_DICT[k] is not None else k for k in matches]  # k=v
+            match_str = f"Similar arguments are i.e. {matches}." if matches else ''
             string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
         raise SyntaxError(string + CLI_HELP_MSG) from e
 
@@ -265,7 +264,7 @@ def entrypoint(debug=''):
         LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {modes}. Using default 'mode={mode}'.")
     elif mode not in modes:
         if mode != 'checks':
-            raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {modes}.")
+            raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {modes}.\n{CLI_HELP_MSG}")
         LOGGER.warning("WARNING ⚠️ 'yolo mode=checks' is deprecated. Use 'yolo checks' instead.")
         checks.check_yolo()
         return
diff --git a/ultralytics/yolo/data/augment.py b/ultralytics/yolo/data/augment.py
index 8ae02619..3c42e610 100644
--- a/ultralytics/yolo/data/augment.py
+++ b/ultralytics/yolo/data/augment.py
@@ -682,7 +682,8 @@ def v8_transforms(dataset, imgsz, hyp):
 # Classification augmentations -----------------------------------------------------------------------------------------
 def classify_transforms(size=224):
     # Transforms to apply if albumentations not installed
-    assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
+    if not isinstance(size, int):
+        raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
     # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
     return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
 
diff --git a/ultralytics/yolo/engine/exporter.py b/ultralytics/yolo/engine/exporter.py
index 005a5040..58370f96 100644
--- a/ultralytics/yolo/engine/exporter.py
+++ b/ultralytics/yolo/engine/exporter.py
@@ -48,7 +48,6 @@ TensorFlow.js:
     $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
     $ npm start
 """
-import contextlib
 import json
 import os
 import platform
@@ -74,7 +73,7 @@ from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, __version__, callbacks,
 from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
 from ultralytics.yolo.utils.files import file_size
 from ultralytics.yolo.utils.ops import Profile
-from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
+from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode, get_latest_opset
 
 MACOS = platform.system() == 'Darwin'  # macOS environment
 
@@ -97,6 +96,10 @@ def export_formats():
     return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
 
 
+EXPORT_FORMATS_LIST = list(export_formats()['Argument'][1:])
+EXPORT_FORMATS_TABLE = str(export_formats())
+
+
 def try_export(inner_func):
     # YOLOv8 export decorator, i..e @try_export
     inner_args = get_default_args(inner_func)
@@ -244,7 +247,7 @@ class Exporter:
                                                   agnostic_nms=self.args.agnostic_nms)
                     if edgetpu:
                         f[8], _ = self._export_edgetpu()
-                    self._add_tflite_metadata(f[8] or f[7], num_outputs=len(self.output_shape))
+                    self._add_tflite_metadata(f[8] or f[7])
                 if tfjs:
                     f[9], _ = self._export_tfjs()
         if paddle:  # PaddlePaddle
@@ -253,11 +256,11 @@ class Exporter:
         # Finish
         f = [str(x) for x in f if x]  # filter out '' and None
         if any(f):
-            s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
+            f = str(Path(f[-1]))
             LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
                         f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
-                        f"\nPredict:         yolo task={model.task} mode=predict model={f[-1]} {s}"
-                        f"\nValidate:        yolo task={model.task} mode=val model={f[-1]} {s}"
+                        f"\nPredict:         yolo task={model.task} mode=predict model={f}"
+                        f"\nValidate:        yolo task={model.task} mode=val model={f}"
                         f"\nVisualize:       https://netron.app")
 
         self.run_callbacks("on_export_end")
@@ -304,7 +307,7 @@ class Exporter:
             self.im.cpu() if dynamic else self.im,
             f,
             verbose=False,
-            opset_version=self.args.opset,
+            opset_version=self.args.opset or get_latest_opset(),
             do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
             input_names=['images'],
             output_names=output_names,
@@ -507,6 +510,10 @@ class Exporter:
         # Export to TF SavedModel
         subprocess.run(f'onnx2tf -i {onnx} --output_signaturedefs -o {f}', shell=True)
 
+        # Add TFLite metadata
+        for tflite_file in Path(f).rglob('*.tflite'):
+            self._add_tflite_metadata(tflite_file)
+
         # Load saved_model
         keras_model = tf.saved_model.load(f, tags=None, options=None)
 
@@ -661,44 +668,47 @@ class Exporter:
                 r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
                 r'"Identity.?.?": {"name": "Identity.?.?"}, '
                 r'"Identity.?.?": {"name": "Identity.?.?"}, '
-                r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
+                r'"Identity.?.?": {"name": "Identity.?.?"}}}',
+                r'{"outputs": {"Identity": {"name": "Identity"}, '
                 r'"Identity_1": {"name": "Identity_1"}, '
                 r'"Identity_2": {"name": "Identity_2"}, '
-                r'"Identity_3": {"name": "Identity_3"}}}', f_json.read_text())
+                r'"Identity_3": {"name": "Identity_3"}}}',
+                f_json.read_text(),
+            )
             j.write(subst)
         return f, None
 
-    def _add_tflite_metadata(self, file, num_outputs):
+    def _add_tflite_metadata(self, file):
         # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
-        with contextlib.suppress(ImportError):
-            # check_requirements('tflite_support')
-            from tflite_support import flatbuffers  # noqa
-            from tflite_support import metadata as _metadata  # noqa
-            from tflite_support import metadata_schema_py_generated as _metadata_fb  # noqa
+        check_requirements('tflite_support')
 
-            tmp_file = Path('/tmp/meta.txt')
-            with open(tmp_file, 'w') as meta_f:
-                meta_f.write(str(self.metadata))
+        from tflite_support import flatbuffers  # noqa
+        from tflite_support import metadata as _metadata  # noqa
+        from tflite_support import metadata_schema_py_generated as _metadata_fb  # noqa
 
-            model_meta = _metadata_fb.ModelMetadataT()
-            label_file = _metadata_fb.AssociatedFileT()
-            label_file.name = tmp_file.name
-            model_meta.associatedFiles = [label_file]
+        tmp_file = Path('/tmp/meta.txt')
+        with open(tmp_file, 'w') as meta_f:
+            meta_f.write(str(self.metadata))
 
-            subgraph = _metadata_fb.SubGraphMetadataT()
-            subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
-            subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
-            model_meta.subgraphMetadata = [subgraph]
+        model_meta = _metadata_fb.ModelMetadataT()
+        label_file = _metadata_fb.AssociatedFileT()
+        label_file.name = tmp_file.name
+        model_meta.associatedFiles = [label_file]
 
-            b = flatbuffers.Builder(0)
-            b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
-            metadata_buf = b.Output()
+        subgraph = _metadata_fb.SubGraphMetadataT()
+        subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
+        subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * len(self.output_shape)
+        model_meta.subgraphMetadata = [subgraph]
 
-            populator = _metadata.MetadataPopulator.with_model_file(file)
-            populator.load_metadata_buffer(metadata_buf)
-            populator.load_associated_files([str(tmp_file)])
-            populator.populate()
-            tmp_file.unlink()
+        b = flatbuffers.Builder(0)
+        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
+        metadata_buf = b.Output()
+
+        populator = _metadata.MetadataPopulator.with_model_file(file)
+        populator.load_metadata_buffer(metadata_buf)
+        populator.load_associated_files([str(tmp_file)])
+        populator.populate()
+        tmp_file.unlink()
 
     def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
         # YOLOv8 CoreML pipeline
diff --git a/ultralytics/yolo/engine/model.py b/ultralytics/yolo/engine/model.py
index 0bab311c..da885152 100644
--- a/ultralytics/yolo/engine/model.py
+++ b/ultralytics/yolo/engine/model.py
@@ -6,11 +6,11 @@ from typing import List
 
 from ultralytics import yolo  # noqa
 from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
-                                  guess_model_task)
+                                  guess_model_task, nn)
 from ultralytics.yolo.cfg import get_cfg
 from ultralytics.yolo.engine.exporter import Exporter
 from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, callbacks, yaml_load
-from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
+from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_yaml
 from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
 from ultralytics.yolo.utils.torch_utils import smart_inference_mode
 
@@ -55,19 +55,16 @@ class YOLO:
         self.cfg = None  # if loaded from *.yaml
         self.ckpt_path = None
         self.overrides = {}  # overrides for trainer object
+        self.metrics_data = None
 
         # Load or create new YOLO model
         suffix = Path(model).suffix
         if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
             model, suffix = Path(model).with_suffix('.pt'), '.pt'  # add suffix, i.e. yolov8n -> yolov8n.pt
-        try:
-            if suffix == '.yaml':
-                self._new(model)
-            else:
-                self._load(model)
-        except Exception as e:
-            raise NotImplementedError(f"Unable to load model='{model}'. "
-                                      f"As an example try model='yolov8n.pt' or model='yolov8n.yaml'") from e
+        if suffix == '.yaml':
+            self._new(model)
+        else:
+            self._load(model)
 
     def __call__(self, source=None, stream=False, **kwargs):
         return self.predict(source, stream, **kwargs)
@@ -100,15 +97,27 @@ class YOLO:
             self.overrides = self.model.args
             self._reset_ckpt_args(self.overrides)
         else:
+            check_file(weights)
             self.model, self.ckpt = weights, None
             self.task = guess_model_task(weights)
         self.ckpt_path = weights
         self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
 
+    def _check_is_pytorch_model(self):
+        """
+        Raises TypeError is model is not a PyTorch model
+        """
+        if not isinstance(self.model, nn.Module):
+            raise TypeError(f"model='{self.model}' must be a PyTorch model, but is a different type. PyTorch models "
+                            f"can be used to train, val, predict and export, i.e. "
+                            f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
+                            f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
+
     def reset(self):
         """
         Resets the model modules.
         """
+        self._check_is_pytorch_model()
         for m in self.model.modules():
             if hasattr(m, 'reset_parameters'):
                 m.reset_parameters()
@@ -122,9 +131,11 @@ class YOLO:
         Args:
             verbose (bool): Controls verbosity.
         """
+        self._check_is_pytorch_model()
         self.model.info(verbose=verbose)
 
     def fuse(self):
+        self._check_is_pytorch_model()
         self.model.fuse()
 
     def predict(self, source=None, stream=False, **kwargs):
@@ -176,6 +187,8 @@ class YOLO:
 
         validator = self.ValidatorClass(args=args)
         validator(model=self.model)
+        self.metrics_data = validator.metrics
+
         return validator.metrics
 
     @smart_inference_mode()
@@ -186,7 +199,7 @@ class YOLO:
         Args:
             **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
         """
-
+        self._check_is_pytorch_model()
         overrides = self.overrides.copy()
         overrides.update(kwargs)
         args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
@@ -196,7 +209,7 @@ class YOLO:
         if args.batch == DEFAULT_CFG.batch:
             args.batch = 1  # default to 1 if not modified
         exporter = Exporter(overrides=args)
-        exporter(model=self.model)
+        return exporter(model=self.model)
 
     def train(self, **kwargs):
         """
@@ -205,6 +218,7 @@ class YOLO:
         Args:
             **kwargs (Any): Any number of arguments representing the training configuration.
         """
+        self._check_is_pytorch_model()
         overrides = self.overrides.copy()
         overrides.update(kwargs)
         if kwargs.get("cfg"):
@@ -226,6 +240,7 @@ class YOLO:
         if RANK in {0, -1}:
             self.model, _ = attempt_load_one_weight(str(self.trainer.best))
             self.overrides = self.model.args
+        self.metrics_data = self.trainer.validator.metrics
 
     def to(self, device):
         """
@@ -234,15 +249,14 @@ class YOLO:
         Args:
             device (str): device
         """
+        self._check_is_pytorch_model()
         self.model.to(device)
 
     def _assign_ops_from_task(self):
         model_class, train_lit, val_lit, pred_lit = MODEL_MAP[self.task]
-        # warning: eval is unsafe. Use with caution
         trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
         validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
         predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
-
         return model_class, trainer_class, validator_class, predictor_class
 
     @property
@@ -250,7 +264,7 @@ class YOLO:
         """
          Returns class names of the loaded model.
         """
-        return self.model.names
+        return self.model.names if hasattr(self.model, 'names') else None
 
     @property
     def transforms(self):
@@ -259,6 +273,16 @@ class YOLO:
         """
         return self.model.transforms if hasattr(self.model, 'transforms') else None
 
+    @property
+    def metrics(self):
+        """
+        Returns metrics if computed
+        """
+        if not self.metrics_data:
+            LOGGER.info("No metrics data found! Run training or validation operation first.")
+
+        return self.metrics_data
+
     @staticmethod
     def add_callback(event: str, func):
         """
@@ -269,5 +293,5 @@ class YOLO:
     @staticmethod
     def _reset_ckpt_args(args):
         for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
-                'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots':
+                'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots', 'opset':
             args.pop(arg, None)
diff --git a/ultralytics/yolo/engine/predictor.py b/ultralytics/yolo/engine/predictor.py
index 77382a75..b2633eb4 100644
--- a/ultralytics/yolo/engine/predictor.py
+++ b/ultralytics/yolo/engine/predictor.py
@@ -35,6 +35,7 @@ import torch
 from ultralytics.nn.autobackend import AutoBackend
 from ultralytics.yolo.cfg import get_cfg
 from ultralytics.yolo.data import load_inference_source
+from ultralytics.yolo.data.augment import classify_transforms
 from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
 from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
 from ultralytics.yolo.utils.files import increment_path
@@ -121,8 +122,12 @@ class BasePredictor:
 
     def setup_source(self, source):
         self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2)  # check image size
+        if self.args.task == 'classify':
+            transforms = getattr(self.model.model, 'transforms', classify_transforms(self.imgsz[0]))
+        else:  # predict, segment
+            transforms = None
         self.dataset = load_inference_source(source=source,
-                                             transforms=getattr(self.model.model, 'transforms', None),
+                                             transforms=transforms,
                                              imgsz=self.imgsz,
                                              vid_stride=self.args.vid_stride,
                                              stride=self.model.stride,
diff --git a/ultralytics/yolo/engine/trainer.py b/ultralytics/yolo/engine/trainer.py
index 0a81e6d8..f472add3 100644
--- a/ultralytics/yolo/engine/trainer.py
+++ b/ultralytics/yolo/engine/trainer.py
@@ -217,19 +217,18 @@ class BaseTrainer:
 
         # Optimizer
         self.accumulate = max(round(self.args.nbs / self.batch_size), 1)  # accumulate loss before optimizing
-        self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs  # scale weight_decay
+        weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs  # scale weight_decay
         self.optimizer = self.build_optimizer(model=self.model,
                                               name=self.args.optimizer,
                                               lr=self.args.lr0,
                                               momentum=self.args.momentum,
-                                              decay=self.args.weight_decay)
+                                              decay=weight_decay)
         # Scheduler
         if self.args.cos_lr:
             self.lf = one_cycle(1, self.args.lrf, self.epochs)  # cosine 1->hyp['lrf']
         else:
             self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf  # linear
         self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
-        self.scheduler.last_epoch = self.start_epoch - 1  # do not move
         self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
 
         # dataloaders
@@ -242,6 +241,7 @@ class BaseTrainer:
             self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))  # TODO: init metrics for plot_results()?
             self.ema = ModelEMA(self.model)
         self.resume_training(ckpt)
+        self.scheduler.last_epoch = self.start_epoch - 1  # do not move
         self.run_callbacks("on_pretrain_routine_end")
 
     def _do_train(self, rank=-1, world_size=1):
@@ -555,6 +555,12 @@ class BaseTrainer:
             self.epochs += ckpt['epoch']  # finetune additional epochs
         self.best_fitness = best_fitness
         self.start_epoch = start_epoch
+        if start_epoch > (self.epochs - self.args.close_mosaic):
+            self.console.info("Closing dataloader mosaic")
+            if hasattr(self.train_loader.dataset, 'mosaic'):
+                self.train_loader.dataset.mosaic = False
+            if hasattr(self.train_loader.dataset, 'close_mosaic'):
+                self.train_loader.dataset.close_mosaic(hyp=self.args)
 
     @staticmethod
     def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
diff --git a/ultralytics/yolo/utils/checks.py b/ultralytics/yolo/utils/checks.py
index 9a03fc1b..aba49002 100644
--- a/ultralytics/yolo/utils/checks.py
+++ b/ultralytics/yolo/utils/checks.py
@@ -234,17 +234,17 @@ def check_yolov5u_filename(file: str):
     return file
 
 
-def check_file(file, suffix=''):
+def check_file(file, suffix='', download=True):
     # Search/download file (if necessary) and return path
     check_suffix(file, suffix)  # optional
     file = str(file)  # convert to string
     file = check_yolov5u_filename(file)  # yolov5n -> yolov5nu
-    if not file or ('://' not in file and Path(file).is_file()):  # exists ('://' check required in Windows Python<3.10)
+    if not file or ('://' not in file and Path(file).exists()):  # exists ('://' check required in Windows Python<3.10)
         return file
-    elif file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')):  # download
+    elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')):  # download
         url = file  # warning: Pathlib turns :// -> :/
         file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
-        if Path(file).is_file():
+        if Path(file).exists():
             LOGGER.info(f'Found {url} locally at {file}')  # file already exists
         else:
             downloads.safe_download(url=url, file=file, unzip=False)
diff --git a/ultralytics/yolo/utils/dist.py b/ultralytics/yolo/utils/dist.py
index 2da0e806..fd584987 100644
--- a/ultralytics/yolo/utils/dist.py
+++ b/ultralytics/yolo/utils/dist.py
@@ -44,11 +44,17 @@ def generate_ddp_file(trainer):
 
 def generate_ddp_command(world_size, trainer):
     import __main__  # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
-    file = generate_ddp_file(trainer) if sys.argv[0].endswith('yolo') else os.path.abspath(sys.argv[0])
+
+    # Get file and args (do not use sys.argv due to security vulnerability)
+    exclude_args = ['save_dir']
+    args = [f"{k}={v}" for k, v in vars(trainer.args).items() if k not in exclude_args]
+    file = generate_ddp_file(trainer)  # if argv[0].endswith('yolo') else os.path.abspath(argv[0])
+
+    # Build command
     torch_distributed_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
     cmd = [
         sys.executable, "-m", torch_distributed_cmd, "--nproc_per_node", f"{world_size}", "--master_port",
-        f"{find_free_network_port()}", file] + sys.argv[1:]
+        f"{find_free_network_port()}", file] + args
     return cmd, file
 
 
diff --git a/ultralytics/yolo/utils/torch_utils.py b/ultralytics/yolo/utils/torch_utils.py
index 0f0114ce..f967d62e 100644
--- a/ultralytics/yolo/utils/torch_utils.py
+++ b/ultralytics/yolo/utils/torch_utils.py
@@ -242,6 +242,11 @@ def copy_attr(a, b, include=(), exclude=()):
             setattr(a, k, v)
 
 
+def get_latest_opset():
+    # Return max supported ONNX opset by this version of torch
+    return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k)  # opset
+
+
 def intersect_dicts(da, db, exclude=()):
     # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
     return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}