mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Improve YOLOv8 ONNX Runtime c++ example for all OS with CmakeList.txt
support (#4274)
Signed-off-by: Onuralp SEZER <thunderbirdtr@fedoraproject.org> Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
c9be1f3cce
commit
22474e9ad5
71
examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt
Normal file
71
examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt
Normal file
@ -0,0 +1,71 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(PROJECT_NAME Yolov8OnnxRuntimeCPPInference)
|
||||
project(${PROJECT_NAME} VERSION 0.0.1 LANGUAGES CXX)
|
||||
|
||||
|
||||
# -------------- Support C++17 for using filesystem ------------------#
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS ON)
|
||||
set(CMAKE_INCLUDE_CURRENT_DIR ON)
|
||||
|
||||
|
||||
# OpenCV
|
||||
find_package(OpenCV REQUIRED)
|
||||
include_directories(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
|
||||
|
||||
# ONNXRUNTIME
|
||||
|
||||
# Set ONNXRUNTIME_VERSION
|
||||
set(ONNXRUNTIME_VERSION 1.15.1)
|
||||
|
||||
if(WIN32)
|
||||
# CPU
|
||||
# set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
|
||||
# GPU
|
||||
set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
|
||||
elseif(LINUX)
|
||||
# CPU
|
||||
# set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
|
||||
# GPU
|
||||
set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
|
||||
elseif(APPLE)
|
||||
set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
|
||||
# Apple X64 binary
|
||||
# set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
|
||||
# Apple Universal binary
|
||||
# set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
|
||||
endif()
|
||||
|
||||
include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
|
||||
|
||||
set(PROJECT_SOURCES
|
||||
main.cpp
|
||||
inference.h
|
||||
inference.cpp
|
||||
)
|
||||
|
||||
add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
|
||||
|
||||
if(WIN32)
|
||||
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
|
||||
elseif(LINUX)
|
||||
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
|
||||
elseif(APPLE)
|
||||
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
|
||||
endif()
|
||||
|
||||
# For windows system, copy onnxruntime.dll to the same folder of the executable file
|
||||
if(WIN32)
|
||||
add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different
|
||||
"${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
|
||||
$<TARGET_FILE_DIR:${PROJECT_NAME}>)
|
||||
endif()
|
||||
|
||||
# Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
|
||||
# and put it in the same folder of the executable file
|
||||
configure_file(coco.yaml ${CMAKE_CURRENT_BINARY_DIR}/coco.yaml COPYONLY)
|
@ -2,8 +2,6 @@
|
||||
|
||||
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
|
||||
|
||||
We recommend using Visual Studio to build the project.
|
||||
|
||||
## Benefits
|
||||
|
||||
- Friendly for deployment in the industrial sector.
|
||||
@ -25,13 +23,20 @@ model = YOLO("yolov8n.pt")
|
||||
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
|
||||
```
|
||||
|
||||
Alternatively, you can use the following command for exporting the model in the terminal
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
|
||||
```
|
||||
|
||||
## Dependencies
|
||||
|
||||
| Dependency | Version |
|
||||
| ----------------------- | -------- |
|
||||
| Onnxruntime-win-x64-gpu | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ | >=17 |
|
||||
| Dependency | Version |
|
||||
| -------------------------------- | -------- |
|
||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ | >=17 |
|
||||
| Cmake | >=3.5 |
|
||||
|
||||
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
|
||||
|
||||
@ -39,9 +44,9 @@ Note: The dependency on C++17 is due to the usage of the C++17 filesystem featur
|
||||
|
||||
```c++
|
||||
// CPU inference
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, false};
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, false};
|
||||
// GPU inference
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, true};
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, true};
|
||||
|
||||
// Load your image
|
||||
cv::Mat img = cv::imread(img_path);
|
||||
|
@ -2,7 +2,6 @@
|
||||
#include <regex>
|
||||
|
||||
#define benchmark
|
||||
#define ELOG
|
||||
|
||||
DCSP_CORE::DCSP_CORE()
|
||||
{
|
||||
@ -29,7 +28,7 @@ char* BlobFromImage(cv::Mat& iImg, T& iBlob)
|
||||
{
|
||||
for (int w = 0; w < imgWidth; w++)
|
||||
{
|
||||
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = (std::remove_pointer<T>::type)((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
|
||||
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -40,8 +39,8 @@ char* BlobFromImage(cv::Mat& iImg, T& iBlob)
|
||||
char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
|
||||
{
|
||||
cv::Mat img = iImg.clone();
|
||||
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
|
||||
if (img.channels() == 1)
|
||||
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
|
||||
if (img.channels() == 1)
|
||||
{
|
||||
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
|
||||
}
|
||||
@ -75,17 +74,21 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
|
||||
OrtCUDAProviderOptions cudaOption;
|
||||
cudaOption.device_id = 0;
|
||||
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
|
||||
//OrtOpenVINOProviderOptions ovOption;
|
||||
//sessionOption.AppendExecutionProvider_OpenVINO(ovOption);
|
||||
}
|
||||
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
||||
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
|
||||
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
|
||||
|
||||
#ifdef _WIN32
|
||||
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
|
||||
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
|
||||
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
|
||||
wide_cstr[ModelPathSize] = L'\0';
|
||||
const wchar_t* modelPath = wide_cstr;
|
||||
#else
|
||||
const char* modelPath = iParams.ModelPath.c_str();
|
||||
#endif // _WIN32
|
||||
|
||||
session = new Ort::Session(env, modelPath, sessionOption);
|
||||
Ort::AllocatorWithDefaultOptions allocator;
|
||||
size_t inputNodesNum = session->GetInputCount();
|
||||
@ -96,7 +99,6 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
|
||||
strcpy(temp_buf, input_node_name.get());
|
||||
inputNodeNames.push_back(temp_buf);
|
||||
}
|
||||
|
||||
size_t OutputNodesNum = session->GetOutputCount();
|
||||
for (size_t i = 0; i < OutputNodesNum; i++)
|
||||
{
|
||||
@ -151,7 +153,7 @@ char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
|
||||
template<typename N>
|
||||
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult)
|
||||
{
|
||||
Ort::Value inputTensor = Ort::Value::CreateTensor<std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
|
||||
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
|
||||
#ifdef benchmark
|
||||
clock_t starttime_2 = clock();
|
||||
#endif // benchmark
|
||||
@ -159,10 +161,11 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
|
||||
#ifdef benchmark
|
||||
clock_t starttime_3 = clock();
|
||||
#endif // benchmark
|
||||
|
||||
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
|
||||
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
|
||||
std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
|
||||
std::remove_pointer<N>::type* output = outputTensor.front().GetTensorMutableData<std::remove_pointer<N>::type>();
|
||||
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
|
||||
delete blob;
|
||||
switch (modelType)
|
||||
{
|
||||
@ -183,7 +186,7 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
|
||||
for (int i = 0; i < strideNum; ++i)
|
||||
{
|
||||
float* classesScores = data + 4;
|
||||
cv::Mat scores(1, classesNum, CV_32FC1, classesScores);
|
||||
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
|
||||
cv::Point class_id;
|
||||
double maxClassScore;
|
||||
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
|
||||
@ -203,13 +206,14 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
|
||||
int width = int(w * x_factor);
|
||||
int height = int(h * y_factor);
|
||||
|
||||
boxes.push_back(cv::Rect(left, top, width, height));
|
||||
boxes.emplace_back(left, top, width, height);
|
||||
}
|
||||
data += signalResultNum;
|
||||
}
|
||||
|
||||
std::vector<int> nmsResult;
|
||||
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
|
||||
|
||||
for (int i = 0; i < nmsResult.size(); ++i)
|
||||
{
|
||||
int idx = nmsResult[i];
|
||||
@ -266,6 +270,5 @@ char* DCSP_CORE::WarmUpSession()
|
||||
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return Ret;
|
||||
}
|
||||
|
@ -1,15 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define RET_OK nullptr
|
||||
|
||||
#ifdef _WIN32
|
||||
#include <Windows.h>
|
||||
#include <direct.h>
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdio.h>
|
||||
#include "io.h"
|
||||
#include "direct.h"
|
||||
#include "opencv.hpp"
|
||||
#include <Windows.h>
|
||||
#include <cstdio>
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include "onnxruntime_cxx_api.h"
|
||||
|
||||
|
||||
@ -23,13 +25,12 @@ enum MODEL_TYPE
|
||||
};
|
||||
|
||||
|
||||
|
||||
typedef struct _DCSP_INIT_PARAM
|
||||
{
|
||||
std::string ModelPath;
|
||||
MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
|
||||
std::vector<int> imgSize={640, 640};
|
||||
|
||||
int classesNum=80;
|
||||
float RectConfidenceThreshold = 0.6;
|
||||
float iouThreshold = 0.5;
|
||||
bool CudaEnable = false;
|
||||
@ -55,16 +56,14 @@ public:
|
||||
public:
|
||||
char* CreateSession(DCSP_INIT_PARAM &iParams);
|
||||
|
||||
|
||||
char* RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult);
|
||||
|
||||
|
||||
char* WarmUpSession();
|
||||
|
||||
|
||||
template<typename N>
|
||||
char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult);
|
||||
|
||||
std::vector<std::string> classes{};
|
||||
|
||||
private:
|
||||
Ort::Env env;
|
||||
@ -74,9 +73,7 @@ private:
|
||||
std::vector<const char*> inputNodeNames;
|
||||
std::vector<const char*> outputNodeNames;
|
||||
|
||||
|
||||
int classesNum;
|
||||
MODEL_TYPE modelType;
|
||||
MODEL_TYPE modelType;
|
||||
std::vector<int> imgSize;
|
||||
float rectConfidenceThreshold;
|
||||
float iouThreshold;
|
||||
|
@ -1,44 +1,94 @@
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include "inference.h"
|
||||
#include <filesystem>
|
||||
|
||||
|
||||
#include <fstream>
|
||||
|
||||
void file_iterator(DCSP_CORE*& p)
|
||||
{
|
||||
std::filesystem::path img_path = R"(E:\project\Project_C++\DCPS_ONNX\TEST_ORIGIN)";
|
||||
int k = 0;
|
||||
for (auto& i : std::filesystem::directory_iterator(img_path))
|
||||
std::filesystem::path current_path = std::filesystem::current_path();
|
||||
std::filesystem::path imgs_path = current_path/"images";
|
||||
for (auto& i : std::filesystem::directory_iterator(imgs_path))
|
||||
{
|
||||
if (i.path().extension() == ".jpg")
|
||||
if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
|
||||
{
|
||||
std::string img_path = i.path().string();
|
||||
//std::cout << img_path << std::endl;
|
||||
cv::Mat img = cv::imread(img_path);
|
||||
std::vector<DCSP_RESULT> res;
|
||||
char* ret = p->RunSession(img, res);
|
||||
for (int i = 0; i < res.size(); i++)
|
||||
{
|
||||
cv::rectangle(img, res.at(i).box, cv::Scalar(125, 123, 0), 3);
|
||||
}
|
||||
p->RunSession(img, res);
|
||||
|
||||
k++;
|
||||
cv::imshow("TEST_ORIGIN", img);
|
||||
for (auto & re : res)
|
||||
{
|
||||
cv::rectangle(img, re.box, cv::Scalar(0, 0 , 255), 3);
|
||||
std::string label = p->classes[re.classId];
|
||||
cv::putText(
|
||||
img,
|
||||
label,
|
||||
cv::Point(re.box.x, re.box.y - 5),
|
||||
cv::FONT_HERSHEY_SIMPLEX,
|
||||
0.75,
|
||||
cv::Scalar(255, 255, 0),
|
||||
2
|
||||
);
|
||||
}
|
||||
cv::imshow("Result", img);
|
||||
cv::waitKey(0);
|
||||
cv::destroyAllWindows();
|
||||
//cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int read_coco_yaml(DCSP_CORE*& p)
|
||||
{
|
||||
// Open the YAML file
|
||||
std::ifstream file("coco.yaml");
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Read the file line by line
|
||||
std::string line;
|
||||
std::vector<std::string> lines;
|
||||
while (std::getline(file, line)) {
|
||||
lines.push_back(line);
|
||||
}
|
||||
|
||||
// Find the start and end of the names section
|
||||
std::size_t start = 0;
|
||||
std::size_t end = 0;
|
||||
for (std::size_t i = 0; i < lines.size(); i++) {
|
||||
if (lines[i].find("names:") != std::string::npos) {
|
||||
start = i + 1;
|
||||
} else if (start > 0 && lines[i].find(':') == std::string::npos) {
|
||||
end = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Extract the names
|
||||
std::vector<std::string> names;
|
||||
for (std::size_t i = start; i < end; i++) {
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string name;
|
||||
std::getline(ss, name, ':'); // Extract the number before the delimiter
|
||||
std::getline(ss, name); // Extract the string after the delimiter
|
||||
names.push_back(name);
|
||||
}
|
||||
|
||||
p->classes = names;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
DCSP_CORE* p1 = new DCSP_CORE;
|
||||
std::string model_path = "yolov8n.onnx";
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 80, 0.1, 0.5, false };
|
||||
char* ret = p1->CreateSession(params);
|
||||
read_coco_yaml(p1);
|
||||
// GPU inference
|
||||
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
|
||||
// CPU inference
|
||||
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false };
|
||||
p1->CreateSession(params);
|
||||
file_iterator(p1);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user