mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-07-07 22:04:53 +08:00
ultralytics 8.0.89
SAM predict and auto-annotate (#2298)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
parent
3e118f6170
commit
243fc4b1fe
@ -1,42 +1 @@
|
|||||||
User-agent: *
|
User-agent: *
|
||||||
Disallow: /tutorials/pruning-sparsity/
|
|
||||||
Disallow: /tutorials/nvidia-jetson/
|
|
||||||
Disallow: /tutorials/training-tips-best-results/
|
|
||||||
Disallow: /tutorials/hyperparameter-evolution/
|
|
||||||
Disallow: /callbacks/
|
|
||||||
Disallow: /config/
|
|
||||||
Disallow: /tutorials/transfer-learning-froze-layers/
|
|
||||||
Disallow: /environments/Docker-Quickstart/
|
|
||||||
Disallow: /tutorials/model-ensembling/
|
|
||||||
Disallow: /tutorials/test-time-augmentation/
|
|
||||||
Disallow: /quick-start/
|
|
||||||
Disallow: /FAQ/augmentation/
|
|
||||||
Disallow: /environments/AWS-Quickstart/
|
|
||||||
Disallow: /tutorials/pytorch-hub/
|
|
||||||
Disallow: /tutorials/torchscript-onnx-coreml-export/
|
|
||||||
Disallow: /tasks/tracking/
|
|
||||||
Disallow: /cfg/
|
|
||||||
Disallow: /tasks/detection/
|
|
||||||
Disallow: /tutorials/train-custom-datasets/
|
|
||||||
Disallow: /cli/
|
|
||||||
Disallow: /tasks/classification/
|
|
||||||
Disallow: /tutorials/multi-gpu-training/
|
|
||||||
Disallow: /engine/
|
|
||||||
Disallow: /tasks/segmentation/
|
|
||||||
Disallow: /predict/
|
|
||||||
Disallow: /python/
|
|
||||||
Disallow: /python
|
|
||||||
Disallow: /environments/GCP-Quickstart/
|
|
||||||
Disallow: /cli
|
|
||||||
Disallow: /tutorials/comet-logging/
|
|
||||||
Disallow: /cfg
|
|
||||||
Disallow: /tutorials/architecture-summary/
|
|
||||||
Disallow: /tutorials/clearml-logging/
|
|
||||||
Disallow: /sdk/
|
|
||||||
Disallow: /tutorials/roboflow/
|
|
||||||
Disallow: /tutorials/training-tips-best-results
|
|
||||||
Disallow: /package-framework/mock_detector/
|
|
||||||
Disallow: /package-framework/
|
|
||||||
Disallow: /tutorials/weights-and-biasis-logging/
|
|
||||||
Disallow: /tutorials/pruning-sparsity
|
|
||||||
Disallow: /tutorials/train-custom-datasets
|
|
||||||
|
219
mkdocs.yml
219
mkdocs.yml
@ -123,6 +123,64 @@ markdown_extensions:
|
|||||||
plugins:
|
plugins:
|
||||||
- mkdocstrings
|
- mkdocstrings
|
||||||
- search
|
- search
|
||||||
|
- redirects:
|
||||||
|
redirect_maps:
|
||||||
|
callbacks.md: usage/callbacks.md
|
||||||
|
cfg.md: usage/cfg.md
|
||||||
|
cli.md: usage/cli.md
|
||||||
|
config.md: usage/cfg.md
|
||||||
|
engine.md: usage/engine.md
|
||||||
|
environments/AWS-Quickstart.md: yolov5/environments/aws_quickstart_tutorial.md
|
||||||
|
environments/Docker-Quickstart.md: yolov5/environments/docker_image_quickstart_tutorial.md
|
||||||
|
environments/GCP-Quickstart.md: yolov5/environments/google_cloud_quickstart_tutorial.md
|
||||||
|
FAQ/augmentation.md: yolov5/tutorials/tips_for_best_training_results.md
|
||||||
|
package-framework.md: index.md
|
||||||
|
package-framework/mock_detector.md: index.md
|
||||||
|
predict.md: modes/predict.md
|
||||||
|
python.md: usage/python.md
|
||||||
|
quick-start.md: quickstart.md
|
||||||
|
reference/base_pred.md: reference/yolo/engine/predictor.md
|
||||||
|
reference/base_trainer.md: reference/yolo/engine/trainer.md
|
||||||
|
reference/exporter.md: reference/yolo/engine/exporter.md
|
||||||
|
reference/model.md: reference/yolo/engine/model.md
|
||||||
|
reference/nn.md: reference/nn/modules.md
|
||||||
|
reference/ops.md: reference/yolo/utils/ops.md
|
||||||
|
reference/results.md: reference/yolo/engine/results.md
|
||||||
|
sdk.md: index.md
|
||||||
|
tasks/classification.md: tasks/classify.md
|
||||||
|
tasks/detection.md: tasks/detect.md
|
||||||
|
tasks/segmentation.md: tasks/segment.md
|
||||||
|
tasks/keypoints.md: tasks/pose.md
|
||||||
|
tasks/tracking.md: modes/track.md
|
||||||
|
tutorials/architecture-summary.md: yolov5/tutorials/architecture_description.md
|
||||||
|
tutorials/clearml-logging.md: yolov5/tutorials/clearml_logging_integration.md
|
||||||
|
tutorials/comet-logging.md: yolov5/tutorials/comet_logging_integration.md
|
||||||
|
tutorials/hyperparameter-evolution.md: yolov5/tutorials/hyperparameter_evolution.md
|
||||||
|
tutorials/model-ensembling.md: yolov5/tutorials/model_ensembling.md
|
||||||
|
tutorials/multi-gpu-training.md: yolov5/tutorials/multi_gpu_training.md
|
||||||
|
tutorials/nvidia-jetson.md: yolov5/tutorials/running_on_jetson_nano.md
|
||||||
|
tutorials/pruning-sparsity.md: yolov5/tutorials/model_pruning_and_sparsity.md
|
||||||
|
tutorials/pytorch-hub.md: yolov5/tutorials/pytorch_hub_model_loading.md
|
||||||
|
tutorials/roboflow.md: yolov5/tutorials/roboflow_datasets_integration.md
|
||||||
|
tutorials/test-time-augmentation.md: yolov5/tutorials/test_time_augmentation.md
|
||||||
|
tutorials/torchscript-onnx-coreml-export.md: yolov5/tutorials/model_export.md
|
||||||
|
tutorials/train-custom-datasets.md: yolov5/tutorials/train_custom_data.md
|
||||||
|
tutorials/training-tips-best-results.md: yolov5/tutorials/tips_for_best_training_results.md
|
||||||
|
tutorials/transfer-learning-froze-layers.md: yolov5/tutorials/transfer_learning_with_frozen_layers.md
|
||||||
|
tutorials/weights-and-biasis-logging.md: yolov5/tutorials/comet_logging_integration.md
|
||||||
|
yolov5/pytorch_hub.md: yolov5/tutorials/pytorch_hub_model_loading.md
|
||||||
|
yolov5/hyp_evolution.md: yolov5/tutorials/hyperparameter_evolution.md
|
||||||
|
yolov5/pruning_sparsity.md: yolov5/tutorials/model_pruning_and_sparsity.md
|
||||||
|
yolov5/comet.md: yolov5/tutorials/comet_logging_integration.md
|
||||||
|
yolov5/tta.md: yolov5/tutorials/test_time_augmentation.md
|
||||||
|
yolov5/multi_gpu_training.md: yolov5/tutorials/multi_gpu_training.md
|
||||||
|
yolov5/ensemble.md: yolov5/tutorials/model_ensembling.md
|
||||||
|
yolov5/jetson_nano.md: yolov5/tutorials/running_on_jetson_nano.md
|
||||||
|
yolov5/transfer_learn_frozen.md: yolov5/tutorials/transfer_learning_with_frozen_layers.md
|
||||||
|
yolov5/neural_magic.md: yolov5/tutorials/neural_magic_pruning_quantization.md
|
||||||
|
yolov5/train_custom_data.md: yolov5/tutorials/train_custom_data.md
|
||||||
|
yolov5/architecture.md: yolov5/tutorials/architecture_description.md
|
||||||
|
yolov5/export.md: yolov5/tutorials/model_export.md
|
||||||
|
|
||||||
# Primary navigation
|
# Primary navigation
|
||||||
nav:
|
nav:
|
||||||
@ -166,88 +224,87 @@ nav:
|
|||||||
- Advanced Customization: usage/engine.md
|
- Advanced Customization: usage/engine.md
|
||||||
- Ultralytics HUB: hub.md
|
- Ultralytics HUB: hub.md
|
||||||
- iOS and Android App: app.md
|
- iOS and Android App: app.md
|
||||||
|
|
||||||
- Reference:
|
- Reference:
|
||||||
- hub:
|
- hub:
|
||||||
- auth: reference/hub/auth.md
|
- auth: reference/hub/auth.md
|
||||||
- session: reference/hub/session.md
|
- session: reference/hub/session.md
|
||||||
- utils: reference/hub/utils.md
|
- utils: reference/hub/utils.md
|
||||||
- nn:
|
- nn:
|
||||||
- autobackend: reference/nn/autobackend.md
|
- autobackend: reference/nn/autobackend.md
|
||||||
- autoshape: reference/nn/autoshape.md
|
- autoshape: reference/nn/autoshape.md
|
||||||
- modules: reference/nn/modules.md
|
- modules: reference/nn/modules.md
|
||||||
- tasks: reference/nn/tasks.md
|
- tasks: reference/nn/tasks.md
|
||||||
- tracker:
|
- tracker:
|
||||||
- track: reference/tracker/track.md
|
- track: reference/tracker/track.md
|
||||||
- trackers:
|
- trackers:
|
||||||
- basetrack: reference/tracker/trackers/basetrack.md
|
- basetrack: reference/tracker/trackers/basetrack.md
|
||||||
- bot_sort: reference/tracker/trackers/bot_sort.md
|
- bot_sort: reference/tracker/trackers/bot_sort.md
|
||||||
- byte_tracker: reference/tracker/trackers/byte_tracker.md
|
- byte_tracker: reference/tracker/trackers/byte_tracker.md
|
||||||
- utils:
|
- utils:
|
||||||
- gmc: reference/tracker/utils/gmc.md
|
- gmc: reference/tracker/utils/gmc.md
|
||||||
- kalman_filter: reference/tracker/utils/kalman_filter.md
|
- kalman_filter: reference/tracker/utils/kalman_filter.md
|
||||||
- matching: reference/tracker/utils/matching.md
|
- matching: reference/tracker/utils/matching.md
|
||||||
- yolo:
|
- yolo:
|
||||||
- data:
|
- data:
|
||||||
- augment: reference/yolo/data/augment.md
|
- augment: reference/yolo/data/augment.md
|
||||||
- base: reference/yolo/data/base.md
|
- base: reference/yolo/data/base.md
|
||||||
- build: reference/yolo/data/build.md
|
- build: reference/yolo/data/build.md
|
||||||
- dataloaders:
|
- dataloaders:
|
||||||
- stream_loaders: reference/yolo/data/dataloaders/stream_loaders.md
|
- stream_loaders: reference/yolo/data/dataloaders/stream_loaders.md
|
||||||
- v5augmentations: reference/yolo/data/dataloaders/v5augmentations.md
|
- v5augmentations: reference/yolo/data/dataloaders/v5augmentations.md
|
||||||
- v5loader: reference/yolo/data/dataloaders/v5loader.md
|
- v5loader: reference/yolo/data/dataloaders/v5loader.md
|
||||||
- dataset: reference/yolo/data/dataset.md
|
- dataset: reference/yolo/data/dataset.md
|
||||||
- dataset_wrappers: reference/yolo/data/dataset_wrappers.md
|
- dataset_wrappers: reference/yolo/data/dataset_wrappers.md
|
||||||
- utils: reference/yolo/data/utils.md
|
- utils: reference/yolo/data/utils.md
|
||||||
- engine:
|
- engine:
|
||||||
- exporter: reference/yolo/engine/exporter.md
|
- exporter: reference/yolo/engine/exporter.md
|
||||||
- model: reference/yolo/engine/model.md
|
- model: reference/yolo/engine/model.md
|
||||||
- predictor: reference/yolo/engine/predictor.md
|
- predictor: reference/yolo/engine/predictor.md
|
||||||
- results: reference/yolo/engine/results.md
|
- results: reference/yolo/engine/results.md
|
||||||
- trainer: reference/yolo/engine/trainer.md
|
- trainer: reference/yolo/engine/trainer.md
|
||||||
- validator: reference/yolo/engine/validator.md
|
- validator: reference/yolo/engine/validator.md
|
||||||
- utils:
|
- utils:
|
||||||
- autobatch: reference/yolo/utils/autobatch.md
|
- autobatch: reference/yolo/utils/autobatch.md
|
||||||
- benchmarks: reference/yolo/utils/benchmarks.md
|
- benchmarks: reference/yolo/utils/benchmarks.md
|
||||||
- callbacks:
|
- callbacks:
|
||||||
- base: reference/yolo/utils/callbacks/base.md
|
- base: reference/yolo/utils/callbacks/base.md
|
||||||
- clearml: reference/yolo/utils/callbacks/clearml.md
|
- clearml: reference/yolo/utils/callbacks/clearml.md
|
||||||
- comet: reference/yolo/utils/callbacks/comet.md
|
- comet: reference/yolo/utils/callbacks/comet.md
|
||||||
- hub: reference/yolo/utils/callbacks/hub.md
|
- hub: reference/yolo/utils/callbacks/hub.md
|
||||||
- mlflow: reference/yolo/utils/callbacks/mlflow.md
|
- mlflow: reference/yolo/utils/callbacks/mlflow.md
|
||||||
- neptune: reference/yolo/utils/callbacks/neptune.md
|
- neptune: reference/yolo/utils/callbacks/neptune.md
|
||||||
- raytune: reference/yolo/utils/callbacks/raytune.md
|
- raytune: reference/yolo/utils/callbacks/raytune.md
|
||||||
- tensorboard: reference/yolo/utils/callbacks/tensorboard.md
|
- tensorboard: reference/yolo/utils/callbacks/tensorboard.md
|
||||||
- wb: reference/yolo/utils/callbacks/wb.md
|
- wb: reference/yolo/utils/callbacks/wb.md
|
||||||
- checks: reference/yolo/utils/checks.md
|
- checks: reference/yolo/utils/checks.md
|
||||||
- dist: reference/yolo/utils/dist.md
|
- dist: reference/yolo/utils/dist.md
|
||||||
- downloads: reference/yolo/utils/downloads.md
|
- downloads: reference/yolo/utils/downloads.md
|
||||||
- errors: reference/yolo/utils/errors.md
|
- errors: reference/yolo/utils/errors.md
|
||||||
- files: reference/yolo/utils/files.md
|
- files: reference/yolo/utils/files.md
|
||||||
- instance: reference/yolo/utils/instance.md
|
- instance: reference/yolo/utils/instance.md
|
||||||
- loss: reference/yolo/utils/loss.md
|
- loss: reference/yolo/utils/loss.md
|
||||||
- metrics: reference/yolo/utils/metrics.md
|
- metrics: reference/yolo/utils/metrics.md
|
||||||
- ops: reference/yolo/utils/ops.md
|
- ops: reference/yolo/utils/ops.md
|
||||||
- plotting: reference/yolo/utils/plotting.md
|
- plotting: reference/yolo/utils/plotting.md
|
||||||
- tal: reference/yolo/utils/tal.md
|
- tal: reference/yolo/utils/tal.md
|
||||||
- torch_utils: reference/yolo/utils/torch_utils.md
|
- torch_utils: reference/yolo/utils/torch_utils.md
|
||||||
- v8:
|
- v8:
|
||||||
- classify:
|
- classify:
|
||||||
- predict: reference/yolo/v8/classify/predict.md
|
- predict: reference/yolo/v8/classify/predict.md
|
||||||
- train: reference/yolo/v8/classify/train.md
|
- train: reference/yolo/v8/classify/train.md
|
||||||
- val: reference/yolo/v8/classify/val.md
|
- val: reference/yolo/v8/classify/val.md
|
||||||
- detect:
|
- detect:
|
||||||
- predict: reference/yolo/v8/detect/predict.md
|
- predict: reference/yolo/v8/detect/predict.md
|
||||||
- train: reference/yolo/v8/detect/train.md
|
- train: reference/yolo/v8/detect/train.md
|
||||||
- val: reference/yolo/v8/detect/val.md
|
- val: reference/yolo/v8/detect/val.md
|
||||||
- pose:
|
- pose:
|
||||||
- predict: reference/yolo/v8/pose/predict.md
|
- predict: reference/yolo/v8/pose/predict.md
|
||||||
- train: reference/yolo/v8/pose/train.md
|
- train: reference/yolo/v8/pose/train.md
|
||||||
- val: reference/yolo/v8/pose/val.md
|
- val: reference/yolo/v8/pose/val.md
|
||||||
- segment:
|
- segment:
|
||||||
- predict: reference/yolo/v8/segment/predict.md
|
- predict: reference/yolo/v8/segment/predict.md
|
||||||
- train: reference/yolo/v8/segment/train.md
|
- train: reference/yolo/v8/segment/train.md
|
||||||
- val: reference/yolo/v8/segment/val.md
|
- val: reference/yolo/v8/segment/val.md
|
||||||
|
|
||||||
- YOLOv5:
|
- YOLOv5:
|
||||||
- yolov5/index.md
|
- yolov5/index.md
|
||||||
|
4
setup.py
4
setup.py
@ -38,7 +38,9 @@ setup(
|
|||||||
include_package_data=True,
|
include_package_data=True,
|
||||||
install_requires=REQUIREMENTS + PKG_REQUIREMENTS,
|
install_requires=REQUIREMENTS + PKG_REQUIREMENTS,
|
||||||
extras_require={
|
extras_require={
|
||||||
'dev': ['check-manifest', 'pytest', 'pytest-cov', 'coverage', 'mkdocs-material', 'mkdocstrings[python]'],
|
'dev': [
|
||||||
|
'check-manifest', 'pytest', 'pytest-cov', 'coverage', 'mkdocs-material', 'mkdocstrings[python]',
|
||||||
|
'mkdocs-redirects'],
|
||||||
'export': ['coremltools>=6.0', 'openvino-dev>=2022.3', 'tensorflowjs'], # automatically installs tensorflow
|
'export': ['coremltools>=6.0', 'openvino-dev>=2022.3', 'tensorflowjs'], # automatically installs tensorflow
|
||||||
},
|
},
|
||||||
classifiers=[
|
classifiers=[
|
||||||
|
@ -185,7 +185,7 @@ def test_workflow():
|
|||||||
def test_predict_callback_and_setup():
|
def test_predict_callback_and_setup():
|
||||||
# test callback addition for prediction
|
# test callback addition for prediction
|
||||||
def on_predict_batch_end(predictor): # results -> List[batch_size]
|
def on_predict_batch_end(predictor): # results -> List[batch_size]
|
||||||
path, _, im0s, _, _ = predictor.batch
|
path, im0s, _, _ = predictor.batch
|
||||||
# print('on_predict_batch_end', im0s[0].shape)
|
# print('on_predict_batch_end', im0s[0].shape)
|
||||||
im0s = im0s if isinstance(im0s, list) else [im0s]
|
im0s = im0s if isinstance(im0s, list) else [im0s]
|
||||||
bs = [predictor.dataset.bs for _ in range(len(path))]
|
bs = [predictor.dataset.bs for _ in range(len(path))]
|
||||||
@ -194,7 +194,7 @@ def test_predict_callback_and_setup():
|
|||||||
model = YOLO(MODEL)
|
model = YOLO(MODEL)
|
||||||
model.add_callback('on_predict_batch_end', on_predict_batch_end)
|
model.add_callback('on_predict_batch_end', on_predict_batch_end)
|
||||||
|
|
||||||
dataset = load_inference_source(source=SOURCE, transforms=model.transforms)
|
dataset = load_inference_source(source=SOURCE)
|
||||||
bs = dataset.bs # noqa access predictor properties
|
bs = dataset.bs # noqa access predictor properties
|
||||||
results = model.predict(dataset, stream=True) # source already setup
|
results = model.predict(dataset, stream=True) # source already setup
|
||||||
for _, (result, im0, bs) in enumerate(results):
|
for _, (result, im0, bs) in enumerate(results):
|
||||||
|
@ -1,9 +1,10 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = '8.0.88'
|
__version__ = '8.0.89'
|
||||||
|
|
||||||
from ultralytics.hub import start
|
from ultralytics.hub import start
|
||||||
|
from ultralytics.vit.sam import SAM
|
||||||
from ultralytics.yolo.engine.model import YOLO
|
from ultralytics.yolo.engine.model import YOLO
|
||||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||||
|
|
||||||
__all__ = '__version__', 'YOLO', 'checks', 'start' # allow simpler import
|
__all__ = '__version__', 'YOLO', 'SAM', 'checks', 'start' # allow simpler import
|
||||||
|
@ -495,6 +495,41 @@ class Detect(nn.Module):
|
|||||||
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||||
|
|
||||||
|
|
||||||
|
class MLPBlock(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim,
|
||||||
|
mlp_dim,
|
||||||
|
act=nn.GELU,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||||
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||||
|
self.act = act()
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.lin2(self.act(self.lin1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||||||
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||||||
|
class LayerNorm2d(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, num_channels, eps=1e-6):
|
||||||
|
super().__init__()
|
||||||
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||||
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
u = x.mean(1, keepdim=True)
|
||||||
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||||
|
x = (x - u) / torch.sqrt(s + self.eps)
|
||||||
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
class Segment(Detect):
|
class Segment(Detect):
|
||||||
"""YOLOv8 Segment head for segmentation models."""
|
"""YOLOv8 Segment head for segmentation models."""
|
||||||
|
|
||||||
|
1
ultralytics/vit/__init__.py
Normal file
1
ultralytics/vit/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from .sam import SAM # noqa
|
3
ultralytics/vit/sam/__init__.py
Normal file
3
ultralytics/vit/sam/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .build import build_sam # noqa
|
||||||
|
from .model import SAM # noqa
|
||||||
|
from .modules.prompt_predictor import PromptPredictor # noqa
|
311
ultralytics/vit/sam/amg.py
Normal file
311
ultralytics/vit/sam/amg.py
Normal file
@ -0,0 +1,311 @@
|
|||||||
|
import math
|
||||||
|
from copy import deepcopy
|
||||||
|
from itertools import product
|
||||||
|
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class MaskData:
|
||||||
|
"""
|
||||||
|
A structure for storing masks and their related data in batched format.
|
||||||
|
Implements basic filtering and concatenation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs) -> None:
|
||||||
|
"""Initialize a MaskData object, ensuring all values are supported types."""
|
||||||
|
for v in kwargs.values():
|
||||||
|
assert isinstance(
|
||||||
|
v, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.'
|
||||||
|
self._stats = dict(**kwargs)
|
||||||
|
|
||||||
|
def __setitem__(self, key: str, item: Any) -> None:
|
||||||
|
"""Set an item in the MaskData object, ensuring it is a supported type."""
|
||||||
|
assert isinstance(
|
||||||
|
item, (list, np.ndarray, torch.Tensor)), 'MaskData only supports list, numpy arrays, and torch tensors.'
|
||||||
|
self._stats[key] = item
|
||||||
|
|
||||||
|
def __delitem__(self, key: str) -> None:
|
||||||
|
"""Delete an item from the MaskData object."""
|
||||||
|
del self._stats[key]
|
||||||
|
|
||||||
|
def __getitem__(self, key: str) -> Any:
|
||||||
|
"""Get an item from the MaskData object."""
|
||||||
|
return self._stats[key]
|
||||||
|
|
||||||
|
def items(self) -> ItemsView[str, Any]:
|
||||||
|
"""Return an ItemsView of the MaskData object."""
|
||||||
|
return self._stats.items()
|
||||||
|
|
||||||
|
def filter(self, keep: torch.Tensor) -> None:
|
||||||
|
"""Filter the MaskData object based on the given boolean tensor."""
|
||||||
|
for k, v in self._stats.items():
|
||||||
|
if v is None:
|
||||||
|
self._stats[k] = None
|
||||||
|
elif isinstance(v, torch.Tensor):
|
||||||
|
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
||||||
|
elif isinstance(v, np.ndarray):
|
||||||
|
self._stats[k] = v[keep.detach().cpu().numpy()]
|
||||||
|
elif isinstance(v, list) and keep.dtype == torch.bool:
|
||||||
|
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
||||||
|
elif isinstance(v, list):
|
||||||
|
self._stats[k] = [v[i] for i in keep]
|
||||||
|
else:
|
||||||
|
raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.')
|
||||||
|
|
||||||
|
def cat(self, new_stats: 'MaskData') -> None:
|
||||||
|
"""Concatenate a new MaskData object to the current one."""
|
||||||
|
for k, v in new_stats.items():
|
||||||
|
if k not in self._stats or self._stats[k] is None:
|
||||||
|
self._stats[k] = deepcopy(v)
|
||||||
|
elif isinstance(v, torch.Tensor):
|
||||||
|
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
||||||
|
elif isinstance(v, np.ndarray):
|
||||||
|
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
||||||
|
elif isinstance(v, list):
|
||||||
|
self._stats[k] = self._stats[k] + deepcopy(v)
|
||||||
|
else:
|
||||||
|
raise TypeError(f'MaskData key {k} has an unsupported type {type(v)}.')
|
||||||
|
|
||||||
|
def to_numpy(self) -> None:
|
||||||
|
"""Convert all torch tensors in the MaskData object to numpy arrays."""
|
||||||
|
for k, v in self._stats.items():
|
||||||
|
if isinstance(v, torch.Tensor):
|
||||||
|
self._stats[k] = v.detach().cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
|
def is_box_near_crop_edge(boxes: torch.Tensor,
|
||||||
|
crop_box: List[int],
|
||||||
|
orig_box: List[int],
|
||||||
|
atol: float = 20.0) -> torch.Tensor:
|
||||||
|
"""Return a boolean tensor indicating if boxes are near the crop edge."""
|
||||||
|
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
||||||
|
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
||||||
|
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
||||||
|
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
||||||
|
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
||||||
|
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
||||||
|
return torch.any(near_crop_edge, dim=1)
|
||||||
|
|
||||||
|
|
||||||
|
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Convert bounding boxes from XYXY format to XYWH format."""
|
||||||
|
box_xywh = deepcopy(box_xyxy)
|
||||||
|
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
||||||
|
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
||||||
|
return box_xywh
|
||||||
|
|
||||||
|
|
||||||
|
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
||||||
|
"""Yield batches of data from the input arguments."""
|
||||||
|
assert args and all(len(a) == len(args[0]) for a in args), 'Batched iteration must have same-size inputs.'
|
||||||
|
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
||||||
|
for b in range(n_batches):
|
||||||
|
yield [arg[b * batch_size:(b + 1) * batch_size] for arg in args]
|
||||||
|
|
||||||
|
|
||||||
|
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
||||||
|
"""Encode masks as uncompressed RLEs in the format expected by pycocotools."""
|
||||||
|
# Put in fortran order and flatten h,w
|
||||||
|
b, h, w = tensor.shape
|
||||||
|
tensor = tensor.permute(0, 2, 1).flatten(1)
|
||||||
|
|
||||||
|
# Compute change indices
|
||||||
|
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
||||||
|
change_indices = diff.nonzero()
|
||||||
|
|
||||||
|
# Encode run length
|
||||||
|
out = []
|
||||||
|
for i in range(b):
|
||||||
|
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
||||||
|
cur_idxs = torch.cat([
|
||||||
|
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||||
|
cur_idxs + 1,
|
||||||
|
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ])
|
||||||
|
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
||||||
|
counts = [] if tensor[i, 0] == 0 else [0]
|
||||||
|
counts.extend(btw_idxs.detach().cpu().tolist())
|
||||||
|
out.append({'size': [h, w], 'counts': counts})
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
||||||
|
"""Compute a binary mask from an uncompressed RLE."""
|
||||||
|
h, w = rle['size']
|
||||||
|
mask = np.empty(h * w, dtype=bool)
|
||||||
|
idx = 0
|
||||||
|
parity = False
|
||||||
|
for count in rle['counts']:
|
||||||
|
mask[idx:idx + count] = parity
|
||||||
|
idx += count
|
||||||
|
parity ^= True
|
||||||
|
mask = mask.reshape(w, h)
|
||||||
|
return mask.transpose() # Put in C order
|
||||||
|
|
||||||
|
|
||||||
|
def area_from_rle(rle: Dict[str, Any]) -> int:
|
||||||
|
"""Calculate the area of a mask from its uncompressed RLE."""
|
||||||
|
return sum(rle['counts'][1::2])
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Computes the stability score for a batch of masks. The stability
|
||||||
|
score is the IoU between the binary masks obtained by thresholding
|
||||||
|
the predicted mask logits at high and low values.
|
||||||
|
"""
|
||||||
|
# One mask is always contained inside the other.
|
||||||
|
# Save memory by preventing unnecessary cast to torch.int64
|
||||||
|
intersections = ((masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1,
|
||||||
|
dtype=torch.int32))
|
||||||
|
unions = ((masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32))
|
||||||
|
return intersections / unions
|
||||||
|
|
||||||
|
|
||||||
|
def build_point_grid(n_per_side: int) -> np.ndarray:
|
||||||
|
"""Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
|
||||||
|
offset = 1 / (2 * n_per_side)
|
||||||
|
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
||||||
|
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
||||||
|
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
||||||
|
return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
||||||
|
|
||||||
|
|
||||||
|
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
|
||||||
|
"""Generate point grids for all crop layers."""
|
||||||
|
return [build_point_grid(int(n_per_side / (scale_per_layer ** i))) for i in range(n_layers + 1)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_crop_boxes(im_size: Tuple[int, ...], n_layers: int,
|
||||||
|
overlap_ratio: float) -> Tuple[List[List[int]], List[int]]:
|
||||||
|
"""Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer."""
|
||||||
|
crop_boxes, layer_idxs = [], []
|
||||||
|
im_h, im_w = im_size
|
||||||
|
short_side = min(im_h, im_w)
|
||||||
|
|
||||||
|
# Original image
|
||||||
|
crop_boxes.append([0, 0, im_w, im_h])
|
||||||
|
layer_idxs.append(0)
|
||||||
|
|
||||||
|
def crop_len(orig_len, n_crops, overlap):
|
||||||
|
"""Crops bounding boxes to the size of the input image."""
|
||||||
|
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
||||||
|
|
||||||
|
for i_layer in range(n_layers):
|
||||||
|
n_crops_per_side = 2 ** (i_layer + 1)
|
||||||
|
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
||||||
|
|
||||||
|
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
||||||
|
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
||||||
|
|
||||||
|
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
||||||
|
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
||||||
|
|
||||||
|
# Crops in XYWH format
|
||||||
|
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
||||||
|
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
||||||
|
crop_boxes.append(box)
|
||||||
|
layer_idxs.append(i_layer + 1)
|
||||||
|
|
||||||
|
return crop_boxes, layer_idxs
|
||||||
|
|
||||||
|
|
||||||
|
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||||
|
"""Uncrop bounding boxes by adding the crop box offset."""
|
||||||
|
x0, y0, _, _ = crop_box
|
||||||
|
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
||||||
|
# Check if boxes has a channel dimension
|
||||||
|
if len(boxes.shape) == 3:
|
||||||
|
offset = offset.unsqueeze(1)
|
||||||
|
return boxes + offset
|
||||||
|
|
||||||
|
|
||||||
|
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||||
|
"""Uncrop points by adding the crop box offset."""
|
||||||
|
x0, y0, _, _ = crop_box
|
||||||
|
offset = torch.tensor([[x0, y0]], device=points.device)
|
||||||
|
# Check if points has a channel dimension
|
||||||
|
if len(points.shape) == 3:
|
||||||
|
offset = offset.unsqueeze(1)
|
||||||
|
return points + offset
|
||||||
|
|
||||||
|
|
||||||
|
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
|
||||||
|
"""Uncrop masks by padding them to the original image size."""
|
||||||
|
x0, y0, x1, y1 = crop_box
|
||||||
|
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
||||||
|
return masks
|
||||||
|
# Coordinate transform masks
|
||||||
|
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
||||||
|
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
||||||
|
return torch.nn.functional.pad(masks, pad, value=0)
|
||||||
|
|
||||||
|
|
||||||
|
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
|
||||||
|
"""Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
|
||||||
|
import cv2 # type: ignore
|
||||||
|
|
||||||
|
assert mode in {'holes', 'islands'}
|
||||||
|
correct_holes = mode == 'holes'
|
||||||
|
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
||||||
|
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
||||||
|
sizes = stats[:, -1][1:] # Row 0 is background label
|
||||||
|
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
||||||
|
if not small_regions:
|
||||||
|
return mask, False
|
||||||
|
fill_labels = [0] + small_regions
|
||||||
|
if not correct_holes:
|
||||||
|
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
||||||
|
# If every region is below threshold, keep largest
|
||||||
|
if not fill_labels:
|
||||||
|
fill_labels = [int(np.argmax(sizes)) + 1]
|
||||||
|
mask = np.isin(regions, fill_labels)
|
||||||
|
return mask, True
|
||||||
|
|
||||||
|
|
||||||
|
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
|
"""Encode uncompressed RLE (run-length encoding) to COCO RLE format."""
|
||||||
|
from pycocotools import mask as mask_utils # type: ignore
|
||||||
|
|
||||||
|
h, w = uncompressed_rle['size']
|
||||||
|
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
||||||
|
rle['counts'] = rle['counts'].decode('utf-8') # Necessary to serialize with json
|
||||||
|
return rle
|
||||||
|
|
||||||
|
|
||||||
|
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
||||||
|
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
||||||
|
"""
|
||||||
|
# torch.max below raises an error on empty inputs, just skip in this case
|
||||||
|
if torch.numel(masks) == 0:
|
||||||
|
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
||||||
|
|
||||||
|
# Normalize shape to CxHxW
|
||||||
|
shape = masks.shape
|
||||||
|
h, w = shape[-2:]
|
||||||
|
masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
|
||||||
|
# Get top and bottom edges
|
||||||
|
in_height, _ = torch.max(masks, dim=-1)
|
||||||
|
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
||||||
|
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
||||||
|
in_height_coords = in_height_coords + h * (~in_height)
|
||||||
|
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
||||||
|
|
||||||
|
# Get left and right edges
|
||||||
|
in_width, _ = torch.max(masks, dim=-2)
|
||||||
|
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
||||||
|
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
||||||
|
in_width_coords = in_width_coords + w * (~in_width)
|
||||||
|
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
||||||
|
|
||||||
|
# If the mask is empty the right edge will be to the left of the left edge.
|
||||||
|
# Replace these boxes with [0, 0, 0, 0]
|
||||||
|
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
||||||
|
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
||||||
|
out = out * (~empty_filter).unsqueeze(-1)
|
||||||
|
|
||||||
|
# Return to original shape
|
||||||
|
return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
|
92
ultralytics/vit/sam/autosize.py
Normal file
92
ultralytics/vit/sam/autosize.py
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from copy import deepcopy
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
class ResizeLongestSide:
|
||||||
|
"""
|
||||||
|
Resizes images to the longest side 'target_length', as well as provides
|
||||||
|
methods for resizing coordinates and boxes. Provides methods for
|
||||||
|
transforming both numpy array and batched torch tensors.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, target_length: int) -> None:
|
||||||
|
self.target_length = target_length
|
||||||
|
|
||||||
|
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array with shape HxWxC in uint8 format.
|
||||||
|
"""
|
||||||
|
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
||||||
|
return np.array(resize(to_pil_image(image), target_size))
|
||||||
|
|
||||||
|
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array of length 2 in the final dimension. Requires the
|
||||||
|
original image size in (H, W) format.
|
||||||
|
"""
|
||||||
|
old_h, old_w = original_size
|
||||||
|
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
|
||||||
|
coords = deepcopy(coords).astype(float)
|
||||||
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||||
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array shape Bx4. Requires the original image size
|
||||||
|
in (H, W) format.
|
||||||
|
"""
|
||||||
|
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
||||||
|
return boxes.reshape(-1, 4)
|
||||||
|
|
||||||
|
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects batched images with shape BxCxHxW and float format. This
|
||||||
|
transformation may not exactly match apply_image. apply_image is
|
||||||
|
the transformation expected by the model.
|
||||||
|
"""
|
||||||
|
# Expects an image in BCHW format. May not exactly match apply_image.
|
||||||
|
target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
|
||||||
|
return F.interpolate(image, target_size, mode='bilinear', align_corners=False, antialias=True)
|
||||||
|
|
||||||
|
def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects a torch tensor with length 2 in the last dimension. Requires the
|
||||||
|
original image size in (H, W) format.
|
||||||
|
"""
|
||||||
|
old_h, old_w = original_size
|
||||||
|
new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
|
||||||
|
coords = deepcopy(coords).to(torch.float)
|
||||||
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||||
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects a torch tensor with shape Bx4. Requires the original image
|
||||||
|
size in (H, W) format.
|
||||||
|
"""
|
||||||
|
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
||||||
|
return boxes.reshape(-1, 4)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
||||||
|
"""
|
||||||
|
Compute the output size given input size and target long side length.
|
||||||
|
"""
|
||||||
|
scale = long_side_length * 1.0 / max(oldh, oldw)
|
||||||
|
newh, neww = oldh * scale, oldw * scale
|
||||||
|
neww = int(neww + 0.5)
|
||||||
|
newh = int(newh + 0.5)
|
||||||
|
return (newh, neww)
|
121
ultralytics/vit/sam/build.py
Normal file
121
ultralytics/vit/sam/build.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ...yolo.utils.downloads import attempt_download_asset
|
||||||
|
from .modules.decoders import MaskDecoder
|
||||||
|
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
||||||
|
from .modules.sam import Sam
|
||||||
|
from .modules.transformer import TwoWayTransformer
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_h(checkpoint=None):
|
||||||
|
"""Build and return a Segment Anything Model (SAM) h-size model."""
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=1280,
|
||||||
|
encoder_depth=32,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_l(checkpoint=None):
|
||||||
|
"""Build and return a Segment Anything Model (SAM) l-size model."""
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=1024,
|
||||||
|
encoder_depth=24,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_b(checkpoint=None):
|
||||||
|
"""Build and return a Segment Anything Model (SAM) b-size model."""
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=768,
|
||||||
|
encoder_depth=12,
|
||||||
|
encoder_num_heads=12,
|
||||||
|
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _build_sam(
|
||||||
|
encoder_embed_dim,
|
||||||
|
encoder_depth,
|
||||||
|
encoder_num_heads,
|
||||||
|
encoder_global_attn_indexes,
|
||||||
|
checkpoint=None,
|
||||||
|
):
|
||||||
|
"""Builds the selected SAM model architecture."""
|
||||||
|
prompt_embed_dim = 256
|
||||||
|
image_size = 1024
|
||||||
|
vit_patch_size = 16
|
||||||
|
image_embedding_size = image_size // vit_patch_size
|
||||||
|
sam = Sam(
|
||||||
|
image_encoder=ImageEncoderViT(
|
||||||
|
depth=encoder_depth,
|
||||||
|
embed_dim=encoder_embed_dim,
|
||||||
|
img_size=image_size,
|
||||||
|
mlp_ratio=4,
|
||||||
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||||
|
num_heads=encoder_num_heads,
|
||||||
|
patch_size=vit_patch_size,
|
||||||
|
qkv_bias=True,
|
||||||
|
use_rel_pos=True,
|
||||||
|
global_attn_indexes=encoder_global_attn_indexes,
|
||||||
|
window_size=14,
|
||||||
|
out_chans=prompt_embed_dim,
|
||||||
|
),
|
||||||
|
prompt_encoder=PromptEncoder(
|
||||||
|
embed_dim=prompt_embed_dim,
|
||||||
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||||
|
input_image_size=(image_size, image_size),
|
||||||
|
mask_in_chans=16,
|
||||||
|
),
|
||||||
|
mask_decoder=MaskDecoder(
|
||||||
|
num_multimask_outputs=3,
|
||||||
|
transformer=TwoWayTransformer(
|
||||||
|
depth=2,
|
||||||
|
embedding_dim=prompt_embed_dim,
|
||||||
|
mlp_dim=2048,
|
||||||
|
num_heads=8,
|
||||||
|
),
|
||||||
|
transformer_dim=prompt_embed_dim,
|
||||||
|
iou_head_depth=3,
|
||||||
|
iou_head_hidden_dim=256,
|
||||||
|
),
|
||||||
|
pixel_mean=[123.675, 116.28, 103.53],
|
||||||
|
pixel_std=[58.395, 57.12, 57.375],
|
||||||
|
)
|
||||||
|
sam.eval()
|
||||||
|
if checkpoint is not None:
|
||||||
|
attempt_download_asset(checkpoint)
|
||||||
|
with open(checkpoint, 'rb') as f:
|
||||||
|
state_dict = torch.load(f)
|
||||||
|
sam.load_state_dict(state_dict)
|
||||||
|
return sam
|
||||||
|
|
||||||
|
|
||||||
|
sam_model_map = {
|
||||||
|
# "default": build_sam_vit_h,
|
||||||
|
'sam_h.pt': build_sam_vit_h,
|
||||||
|
'sam_l.pt': build_sam_vit_l,
|
||||||
|
'sam_b.pt': build_sam_vit_b, }
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam(ckpt='sam_b.pt'):
|
||||||
|
"""Build a SAM model specified by ckpt."""
|
||||||
|
model_builder = sam_model_map.get(ckpt)
|
||||||
|
if not model_builder:
|
||||||
|
raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}')
|
||||||
|
|
||||||
|
return model_builder(ckpt)
|
35
ultralytics/vit/sam/model.py
Normal file
35
ultralytics/vit/sam/model.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
# SAM model interface
|
||||||
|
|
||||||
|
from ultralytics.yolo.cfg import get_cfg
|
||||||
|
|
||||||
|
from .build import build_sam
|
||||||
|
from .predict import Predictor
|
||||||
|
|
||||||
|
|
||||||
|
class SAM:
|
||||||
|
|
||||||
|
def __init__(self, model='sam_b.pt') -> None:
|
||||||
|
if model and not (model.endswith('.pt') or model.endswith('.pth')):
|
||||||
|
# Should raise AssertionError instead?
|
||||||
|
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint')
|
||||||
|
self.model = build_sam(model)
|
||||||
|
self.predictor = None # reuse predictor
|
||||||
|
|
||||||
|
def predict(self, source, stream=False, **kwargs):
|
||||||
|
"""Predicts and returns segmentation masks for given image or video source."""
|
||||||
|
overrides = dict(conf=0.25, task='segment', mode='predict')
|
||||||
|
overrides.update(kwargs) # prefer kwargs
|
||||||
|
if not self.predictor:
|
||||||
|
self.predictor = Predictor(overrides=overrides)
|
||||||
|
self.predictor.setup_model(model=self.model)
|
||||||
|
else: # only update args if predictor is already setup
|
||||||
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||||
|
return self.predictor(source, stream=stream)
|
||||||
|
|
||||||
|
def train(self, **kwargs):
|
||||||
|
"""Function trains models but raises an error as SAM models do not support training."""
|
||||||
|
raise NotImplementedError("SAM models don't support training")
|
||||||
|
|
||||||
|
def val(self, **kwargs):
|
||||||
|
"""Run validation given dataset."""
|
||||||
|
raise NotImplementedError("SAM models don't support validation")
|
0
ultralytics/vit/sam/modules/__init__.py
Normal file
0
ultralytics/vit/sam/modules/__init__.py
Normal file
161
ultralytics/vit/sam/modules/decoders.py
Normal file
161
ultralytics/vit/sam/modules/decoders.py
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
from typing import List, Tuple, Type
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from ultralytics.nn.modules import LayerNorm2d
|
||||||
|
|
||||||
|
|
||||||
|
class MaskDecoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
transformer_dim: int,
|
||||||
|
transformer: nn.Module,
|
||||||
|
num_multimask_outputs: int = 3,
|
||||||
|
activation: Type[nn.Module] = nn.GELU,
|
||||||
|
iou_head_depth: int = 3,
|
||||||
|
iou_head_hidden_dim: int = 256,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Predicts masks given an image and prompt embeddings, using a
|
||||||
|
transformer architecture.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformer_dim (int): the channel dimension of the transformer
|
||||||
|
transformer (nn.Module): the transformer used to predict masks
|
||||||
|
num_multimask_outputs (int): the number of masks to predict
|
||||||
|
when disambiguating masks
|
||||||
|
activation (nn.Module): the type of activation to use when
|
||||||
|
upscaling masks
|
||||||
|
iou_head_depth (int): the depth of the MLP used to predict
|
||||||
|
mask quality
|
||||||
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||||
|
used to predict mask quality
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.transformer_dim = transformer_dim
|
||||||
|
self.transformer = transformer
|
||||||
|
|
||||||
|
self.num_multimask_outputs = num_multimask_outputs
|
||||||
|
|
||||||
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||||
|
self.num_mask_tokens = num_multimask_outputs + 1
|
||||||
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||||
|
|
||||||
|
self.output_upscaling = nn.Sequential(
|
||||||
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(transformer_dim // 4),
|
||||||
|
activation(),
|
||||||
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||||
|
activation(),
|
||||||
|
)
|
||||||
|
self.output_hypernetworks_mlps = nn.ModuleList([
|
||||||
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)])
|
||||||
|
|
||||||
|
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
multimask_output: bool,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks given image and prompt embeddings.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
||||||
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||||
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||||
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||||
|
multimask_output (bool): Whether to return multiple masks or a single
|
||||||
|
mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: batched predicted masks
|
||||||
|
torch.Tensor: batched predictions of mask quality
|
||||||
|
"""
|
||||||
|
masks, iou_pred = self.predict_masks(
|
||||||
|
image_embeddings=image_embeddings,
|
||||||
|
image_pe=image_pe,
|
||||||
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Select the correct mask or masks for output
|
||||||
|
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
|
||||||
|
masks = masks[:, mask_slice, :, :]
|
||||||
|
iou_pred = iou_pred[:, mask_slice]
|
||||||
|
|
||||||
|
# Prepare output
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
def predict_masks(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Predicts masks. See 'forward' for more details."""
|
||||||
|
# Concatenate output tokens
|
||||||
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||||
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||||
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||||
|
|
||||||
|
# Expand per-image data in batch direction to be per-mask
|
||||||
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||||
|
src = src + dense_prompt_embeddings
|
||||||
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||||
|
b, c, h, w = src.shape
|
||||||
|
|
||||||
|
# Run the transformer
|
||||||
|
hs, src = self.transformer(src, pos_src, tokens)
|
||||||
|
iou_token_out = hs[:, 0, :]
|
||||||
|
mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :]
|
||||||
|
|
||||||
|
# Upscale mask embeddings and predict masks using the mask tokens
|
||||||
|
src = src.transpose(1, 2).view(b, c, h, w)
|
||||||
|
upscaled_embedding = self.output_upscaling(src)
|
||||||
|
hyper_in_list: List[torch.Tensor] = [
|
||||||
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)]
|
||||||
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||||
|
b, c, h, w = upscaled_embedding.shape
|
||||||
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||||
|
|
||||||
|
# Generate mask quality predictions
|
||||||
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||||
|
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
|
||||||
|
# Lightly adapted from
|
||||||
|
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||||
|
class MLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dim: int,
|
||||||
|
hidden_dim: int,
|
||||||
|
output_dim: int,
|
||||||
|
num_layers: int,
|
||||||
|
sigmoid_output: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.num_layers = num_layers
|
||||||
|
h = [hidden_dim] * (num_layers - 1)
|
||||||
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||||
|
self.sigmoid_output = sigmoid_output
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""Executes feedforward within the neural network module and applies activation."""
|
||||||
|
for i, layer in enumerate(self.layers):
|
||||||
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||||
|
if self.sigmoid_output:
|
||||||
|
x = F.sigmoid(x)
|
||||||
|
return x
|
582
ultralytics/vit/sam/modules/encoders.py
Normal file
582
ultralytics/vit/sam/modules/encoders.py
Normal file
@ -0,0 +1,582 @@
|
|||||||
|
from typing import Any, Optional, Tuple, Type
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from ultralytics.nn.modules import LayerNorm2d, MLPBlock
|
||||||
|
|
||||||
|
|
||||||
|
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||||
|
class ImageEncoderViT(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
img_size: int = 1024,
|
||||||
|
patch_size: int = 16,
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
depth: int = 12,
|
||||||
|
num_heads: int = 12,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
out_chans: int = 256,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_abs_pos: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
global_attn_indexes: Tuple[int, ...] = (),
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (int): Input image size.
|
||||||
|
patch_size (int): Patch size.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): Patch embedding dimension.
|
||||||
|
depth (int): Depth of ViT.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks.
|
||||||
|
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.img_size = img_size
|
||||||
|
|
||||||
|
self.patch_embed = PatchEmbed(
|
||||||
|
kernel_size=(patch_size, patch_size),
|
||||||
|
stride=(patch_size, patch_size),
|
||||||
|
in_chans=in_chans,
|
||||||
|
embed_dim=embed_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pos_embed: Optional[nn.Parameter] = None
|
||||||
|
if use_abs_pos:
|
||||||
|
# Initialize absolute positional embedding with pretrain image size.
|
||||||
|
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
|
||||||
|
|
||||||
|
self.blocks = nn.ModuleList()
|
||||||
|
for i in range(depth):
|
||||||
|
block = Block(
|
||||||
|
dim=embed_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_ratio=mlp_ratio,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
norm_layer=norm_layer,
|
||||||
|
act_layer=act_layer,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
window_size=window_size if i not in global_attn_indexes else 0,
|
||||||
|
input_size=(img_size // patch_size, img_size // patch_size),
|
||||||
|
)
|
||||||
|
self.blocks.append(block)
|
||||||
|
|
||||||
|
self.neck = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
embed_dim,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
nn.Conv2d(
|
||||||
|
out_chans,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.patch_embed(x)
|
||||||
|
if self.pos_embed is not None:
|
||||||
|
x = x + self.pos_embed
|
||||||
|
|
||||||
|
for blk in self.blocks:
|
||||||
|
x = blk(x)
|
||||||
|
|
||||||
|
x = self.neck(x.permute(0, 3, 1, 2))
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class PromptEncoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
image_embedding_size: Tuple[int, int],
|
||||||
|
input_image_size: Tuple[int, int],
|
||||||
|
mask_in_chans: int,
|
||||||
|
activation: Type[nn.Module] = nn.GELU,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Encodes prompts for input to SAM's mask decoder.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
embed_dim (int): The prompts' embedding dimension
|
||||||
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
||||||
|
image embedding, as (H, W).
|
||||||
|
input_image_size (int): The padded size of the image as input
|
||||||
|
to the image encoder, as (H, W).
|
||||||
|
mask_in_chans (int): The number of hidden channels used for
|
||||||
|
encoding input masks.
|
||||||
|
activation (nn.Module): The activation to use when encoding
|
||||||
|
input masks.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.input_image_size = input_image_size
|
||||||
|
self.image_embedding_size = image_embedding_size
|
||||||
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||||
|
|
||||||
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||||
|
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
|
||||||
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||||
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||||
|
|
||||||
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||||||
|
self.mask_downscaling = nn.Sequential(
|
||||||
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(mask_in_chans // 4),
|
||||||
|
activation(),
|
||||||
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(mask_in_chans),
|
||||||
|
activation(),
|
||||||
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||||
|
)
|
||||||
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||||
|
|
||||||
|
def get_dense_pe(self) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the positional encoding used to encode point prompts,
|
||||||
|
applied to a dense set of points the shape of the image encoding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Positional encoding with shape
|
||||||
|
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||||
|
"""
|
||||||
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||||
|
|
||||||
|
def _embed_points(
|
||||||
|
self,
|
||||||
|
points: torch.Tensor,
|
||||||
|
labels: torch.Tensor,
|
||||||
|
pad: bool,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Embeds point prompts."""
|
||||||
|
points = points + 0.5 # Shift to center of pixel
|
||||||
|
if pad:
|
||||||
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||||||
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||||||
|
points = torch.cat([points, padding_point], dim=1)
|
||||||
|
labels = torch.cat([labels, padding_label], dim=1)
|
||||||
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||||||
|
point_embedding[labels == -1] = 0.0
|
||||||
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||||
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||||
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||||
|
return point_embedding
|
||||||
|
|
||||||
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Embeds box prompts."""
|
||||||
|
boxes = boxes + 0.5 # Shift to center of pixel
|
||||||
|
coords = boxes.reshape(-1, 2, 2)
|
||||||
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||||||
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||||
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||||
|
return corner_embedding
|
||||||
|
|
||||||
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Embeds mask inputs."""
|
||||||
|
return self.mask_downscaling(masks)
|
||||||
|
|
||||||
|
def _get_batch_size(
|
||||||
|
self,
|
||||||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||||
|
boxes: Optional[torch.Tensor],
|
||||||
|
masks: Optional[torch.Tensor],
|
||||||
|
) -> int:
|
||||||
|
"""
|
||||||
|
Gets the batch size of the output given the batch size of the input prompts.
|
||||||
|
"""
|
||||||
|
if points is not None:
|
||||||
|
return points[0].shape[0]
|
||||||
|
elif boxes is not None:
|
||||||
|
return boxes.shape[0]
|
||||||
|
elif masks is not None:
|
||||||
|
return masks.shape[0]
|
||||||
|
else:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def _get_device(self) -> torch.device:
|
||||||
|
return self.point_embeddings[0].weight.device
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||||
|
boxes: Optional[torch.Tensor],
|
||||||
|
masks: Optional[torch.Tensor],
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Embeds different types of prompts, returning both sparse and dense
|
||||||
|
embeddings.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||||||
|
and labels to embed.
|
||||||
|
boxes (torch.Tensor or none): boxes to embed
|
||||||
|
masks (torch.Tensor or none): masks to embed
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||||||
|
BxNx(embed_dim), where N is determined by the number of input points
|
||||||
|
and boxes.
|
||||||
|
torch.Tensor: dense embeddings for the masks, in the shape
|
||||||
|
Bx(embed_dim)x(embed_H)x(embed_W)
|
||||||
|
"""
|
||||||
|
bs = self._get_batch_size(points, boxes, masks)
|
||||||
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||||||
|
if points is not None:
|
||||||
|
coords, labels = points
|
||||||
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||||
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||||
|
if boxes is not None:
|
||||||
|
box_embeddings = self._embed_boxes(boxes)
|
||||||
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||||
|
|
||||||
|
if masks is not None:
|
||||||
|
dense_embeddings = self._embed_masks(masks)
|
||||||
|
else:
|
||||||
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1,
|
||||||
|
1).expand(bs, -1, self.image_embedding_size[0],
|
||||||
|
self.image_embedding_size[1])
|
||||||
|
|
||||||
|
return sparse_embeddings, dense_embeddings
|
||||||
|
|
||||||
|
|
||||||
|
class PositionEmbeddingRandom(nn.Module):
|
||||||
|
"""
|
||||||
|
Positional encoding using random spatial frequencies.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||||
|
super().__init__()
|
||||||
|
if scale is None or scale <= 0.0:
|
||||||
|
scale = 1.0
|
||||||
|
self.register_buffer(
|
||||||
|
'positional_encoding_gaussian_matrix',
|
||||||
|
scale * torch.randn((2, num_pos_feats)),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Positionally encode points that are normalized to [0,1]."""
|
||||||
|
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||||
|
coords = 2 * coords - 1
|
||||||
|
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||||
|
coords = 2 * np.pi * coords
|
||||||
|
# outputs d_1 x ... x d_n x C shape
|
||||||
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||||
|
|
||||||
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||||
|
"""Generate positional encoding for a grid of the specified size."""
|
||||||
|
h, w = size
|
||||||
|
device: Any = self.positional_encoding_gaussian_matrix.device
|
||||||
|
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||||||
|
y_embed = grid.cumsum(dim=0) - 0.5
|
||||||
|
x_embed = grid.cumsum(dim=1) - 0.5
|
||||||
|
y_embed = y_embed / h
|
||||||
|
x_embed = x_embed / w
|
||||||
|
|
||||||
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||||||
|
return pe.permute(2, 0, 1) # C x H x W
|
||||||
|
|
||||||
|
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
|
||||||
|
"""Positionally encode points that are not normalized to [0,1]."""
|
||||||
|
coords = coords_input.clone()
|
||||||
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||||||
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||||||
|
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||||
|
use global attention.
|
||||||
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||||
|
positional parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.norm1 = norm_layer(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm2 = norm_layer(dim)
|
||||||
|
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
||||||
|
|
||||||
|
self.window_size = window_size
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
shortcut = x
|
||||||
|
x = self.norm1(x)
|
||||||
|
# Window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
H, W = x.shape[1], x.shape[2]
|
||||||
|
x, pad_hw = window_partition(x, self.window_size)
|
||||||
|
|
||||||
|
x = self.attn(x)
|
||||||
|
# Reverse window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||||
|
|
||||||
|
x = shortcut + x
|
||||||
|
x = x + self.mlp(self.norm2(x))
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""Multi-head Attention block with relative position embeddings."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int = 8,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||||
|
positional parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
self.scale = head_dim ** -0.5
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
|
||||||
|
self.use_rel_pos = use_rel_pos
|
||||||
|
if self.use_rel_pos:
|
||||||
|
assert (input_size is not None), 'Input size must be provided if using relative positional encoding.'
|
||||||
|
# initialize relative positional embeddings
|
||||||
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||||
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
B, H, W, _ = x.shape
|
||||||
|
# qkv with shape (3, B, nHead, H * W, C)
|
||||||
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
# q, k, v with shape (B * nHead, H * W, C)
|
||||||
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||||
|
|
||||||
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||||
|
|
||||||
|
if self.use_rel_pos:
|
||||||
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
||||||
|
|
||||||
|
attn = attn.softmax(dim=-1)
|
||||||
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
||||||
|
x = self.proj(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||||
|
"""
|
||||||
|
Partition into non-overlapping windows with padding if needed.
|
||||||
|
Args:
|
||||||
|
x (tensor): input tokens with [B, H, W, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||||
|
(Hp, Wp): padded height and width before partition
|
||||||
|
"""
|
||||||
|
B, H, W, C = x.shape
|
||||||
|
|
||||||
|
pad_h = (window_size - H % window_size) % window_size
|
||||||
|
pad_w = (window_size - W % window_size) % window_size
|
||||||
|
if pad_h > 0 or pad_w > 0:
|
||||||
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||||
|
Hp, Wp = H + pad_h, W + pad_w
|
||||||
|
|
||||||
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows, (Hp, Wp)
|
||||||
|
|
||||||
|
|
||||||
|
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int],
|
||||||
|
hw: Tuple[int, int]) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Window unpartition into original sequences and removing padding.
|
||||||
|
Args:
|
||||||
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||||
|
hw (Tuple): original height and width (H, W) before padding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: unpartitioned sequences with [B, H, W, C].
|
||||||
|
"""
|
||||||
|
Hp, Wp = pad_hw
|
||||||
|
H, W = hw
|
||||||
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||||
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||||
|
|
||||||
|
if Hp > H or Wp > W:
|
||||||
|
x = x[:, :H, :W, :].contiguous()
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Get relative positional embeddings according to the relative positions of
|
||||||
|
query and key sizes.
|
||||||
|
Args:
|
||||||
|
q_size (int): size of query q.
|
||||||
|
k_size (int): size of key k.
|
||||||
|
rel_pos (Tensor): relative position embeddings (L, C).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Extracted positional embeddings according to relative positions.
|
||||||
|
"""
|
||||||
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||||
|
# Interpolate rel pos if needed.
|
||||||
|
if rel_pos.shape[0] != max_rel_dist:
|
||||||
|
# Interpolate rel pos.
|
||||||
|
rel_pos_resized = F.interpolate(
|
||||||
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||||
|
size=max_rel_dist,
|
||||||
|
mode='linear',
|
||||||
|
)
|
||||||
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||||
|
else:
|
||||||
|
rel_pos_resized = rel_pos
|
||||||
|
|
||||||
|
# Scale the coords with short length if shapes for q and k are different.
|
||||||
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||||
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||||
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||||
|
|
||||||
|
return rel_pos_resized[relative_coords.long()]
|
||||||
|
|
||||||
|
|
||||||
|
def add_decomposed_rel_pos(
|
||||||
|
attn: torch.Tensor,
|
||||||
|
q: torch.Tensor,
|
||||||
|
rel_pos_h: torch.Tensor,
|
||||||
|
rel_pos_w: torch.Tensor,
|
||||||
|
q_size: Tuple[int, int],
|
||||||
|
k_size: Tuple[int, int],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||||
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||||
|
Args:
|
||||||
|
attn (Tensor): attention map.
|
||||||
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||||
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||||
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||||
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||||
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
attn (Tensor): attention map with added relative positional embeddings.
|
||||||
|
"""
|
||||||
|
q_h, q_w = q_size
|
||||||
|
k_h, k_w = k_size
|
||||||
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||||
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||||
|
|
||||||
|
B, _, dim = q.shape
|
||||||
|
r_q = q.reshape(B, q_h, q_w, dim)
|
||||||
|
rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh)
|
||||||
|
rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw)
|
||||||
|
|
||||||
|
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
|
||||||
|
B, q_h * q_w, k_h * k_w)
|
||||||
|
|
||||||
|
return attn
|
||||||
|
|
||||||
|
|
||||||
|
class PatchEmbed(nn.Module):
|
||||||
|
"""
|
||||||
|
Image to Patch Embedding.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
kernel_size: Tuple[int, int] = (16, 16),
|
||||||
|
stride: Tuple[int, int] = (16, 16),
|
||||||
|
padding: Tuple[int, int] = (0, 0),
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
kernel_size (Tuple): kernel size of the projection layer.
|
||||||
|
stride (Tuple): stride of the projection layer.
|
||||||
|
padding (Tuple): padding size of the projection layer.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): Patch embedding dimension.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.proj(x)
|
||||||
|
# B C H W -> B H W C
|
||||||
|
x = x.permute(0, 2, 3, 1)
|
||||||
|
return x
|
352
ultralytics/vit/sam/modules/mask_generator.py
Normal file
352
ultralytics/vit/sam/modules/mask_generator.py
Normal file
@ -0,0 +1,352 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
||||||
|
|
||||||
|
from ..amg import (MaskData, area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh,
|
||||||
|
build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes,
|
||||||
|
is_box_near_crop_edge, mask_to_rle_pytorch, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy,
|
||||||
|
uncrop_masks, uncrop_points)
|
||||||
|
from .prompt_predictor import PromptPredictor
|
||||||
|
from .sam import Sam
|
||||||
|
|
||||||
|
|
||||||
|
class SamAutomaticMaskGenerator:
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model: Sam,
|
||||||
|
points_per_side: Optional[int] = 32,
|
||||||
|
points_per_batch: int = 64,
|
||||||
|
pred_iou_thresh: float = 0.88,
|
||||||
|
stability_score_thresh: float = 0.95,
|
||||||
|
stability_score_offset: float = 1.0,
|
||||||
|
box_nms_thresh: float = 0.7,
|
||||||
|
crop_n_layers: int = 0,
|
||||||
|
crop_nms_thresh: float = 0.7,
|
||||||
|
crop_overlap_ratio: float = 512 / 1500,
|
||||||
|
crop_n_points_downscale_factor: int = 1,
|
||||||
|
point_grids: Optional[List[np.ndarray]] = None,
|
||||||
|
min_mask_region_area: int = 0,
|
||||||
|
output_mode: str = 'binary_mask',
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Using a SAM model, generates masks for the entire image.
|
||||||
|
Generates a grid of point prompts over the image, then filters
|
||||||
|
low quality and duplicate masks. The default settings are chosen
|
||||||
|
for SAM with a ViT-H backbone.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
model (Sam): The SAM model to use for mask prediction.
|
||||||
|
points_per_side (int or None): The number of points to be sampled
|
||||||
|
along one side of the image. The total number of points is
|
||||||
|
points_per_side**2. If None, 'point_grids' must provide explicit
|
||||||
|
point sampling.
|
||||||
|
points_per_batch (int): Sets the number of points run simultaneously
|
||||||
|
by the model. Higher numbers may be faster but use more GPU memory.
|
||||||
|
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
||||||
|
model's predicted mask quality.
|
||||||
|
stability_score_thresh (float): A filtering threshold in [0,1], using
|
||||||
|
the stability of the mask under changes to the cutoff used to binarize
|
||||||
|
the model's mask predictions.
|
||||||
|
stability_score_offset (float): The amount to shift the cutoff when
|
||||||
|
calculated the stability score.
|
||||||
|
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||||
|
suppression to filter duplicate masks.
|
||||||
|
crop_n_layers (int): If >0, mask prediction will be run again on
|
||||||
|
crops of the image. Sets the number of layers to run, where each
|
||||||
|
layer has 2**i_layer number of image crops.
|
||||||
|
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||||
|
suppression to filter duplicate masks between different crops.
|
||||||
|
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
||||||
|
In the first crop layer, crops will overlap by this fraction of
|
||||||
|
the image length. Later layers with more crops scale down this overlap.
|
||||||
|
crop_n_points_downscale_factor (int): The number of points-per-side
|
||||||
|
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
||||||
|
point_grids (list(np.ndarray) or None): A list over explicit grids
|
||||||
|
of points used for sampling, normalized to [0,1]. The nth grid in the
|
||||||
|
list is used in the nth crop layer. Exclusive with points_per_side.
|
||||||
|
min_mask_region_area (int): If >0, postprocessing will be applied
|
||||||
|
to remove disconnected regions and holes in masks with area smaller
|
||||||
|
than min_mask_region_area. Requires opencv.
|
||||||
|
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
||||||
|
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
||||||
|
For large resolutions, 'binary_mask' may consume large amounts of
|
||||||
|
memory.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert (points_per_side is None) != (point_grids is
|
||||||
|
None), 'Exactly one of points_per_side or point_grid must be provided.'
|
||||||
|
if points_per_side is not None:
|
||||||
|
self.point_grids = build_all_layer_point_grids(
|
||||||
|
points_per_side,
|
||||||
|
crop_n_layers,
|
||||||
|
crop_n_points_downscale_factor,
|
||||||
|
)
|
||||||
|
elif point_grids is not None:
|
||||||
|
self.point_grids = point_grids
|
||||||
|
else:
|
||||||
|
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
||||||
|
|
||||||
|
assert output_mode in {'binary_mask', 'uncompressed_rle', 'coco_rle'}, f'Unknown output_mode {output_mode}.'
|
||||||
|
if output_mode == 'coco_rle':
|
||||||
|
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
||||||
|
|
||||||
|
if min_mask_region_area > 0:
|
||||||
|
import cv2 # type: ignore # noqa: F401
|
||||||
|
|
||||||
|
self.predictor = PromptPredictor(model)
|
||||||
|
self.points_per_batch = points_per_batch
|
||||||
|
self.pred_iou_thresh = pred_iou_thresh
|
||||||
|
self.stability_score_thresh = stability_score_thresh
|
||||||
|
self.stability_score_offset = stability_score_offset
|
||||||
|
self.box_nms_thresh = box_nms_thresh
|
||||||
|
self.crop_n_layers = crop_n_layers
|
||||||
|
self.crop_nms_thresh = crop_nms_thresh
|
||||||
|
self.crop_overlap_ratio = crop_overlap_ratio
|
||||||
|
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
||||||
|
self.min_mask_region_area = min_mask_region_area
|
||||||
|
self.output_mode = output_mode
|
||||||
|
|
||||||
|
# TODO: Temporary implementation for compatibility
|
||||||
|
def __call__(self, image: np.ndarray, augment=False, visualize=False) -> List[Dict[str, Any]]:
|
||||||
|
return self.generate(image)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Generates masks for the given image.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list(dict(str, any)): A list over records for masks. Each record is
|
||||||
|
a dict containing the following keys:
|
||||||
|
segmentation (dict(str, any) or np.ndarray): The mask. If
|
||||||
|
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
||||||
|
is a dictionary containing the RLE.
|
||||||
|
bbox (list(float)): The box around the mask, in XYWH format.
|
||||||
|
area (int): The area in pixels of the mask.
|
||||||
|
predicted_iou (float): The model's own prediction of the mask's
|
||||||
|
quality. This is filtered by the pred_iou_thresh parameter.
|
||||||
|
point_coords (list(list(float))): The point coordinates input
|
||||||
|
to the model to generate this mask.
|
||||||
|
stability_score (float): A measure of the mask's quality. This
|
||||||
|
is filtered on using the stability_score_thresh parameter.
|
||||||
|
crop_box (list(float)): The crop of the image used to generate
|
||||||
|
the mask, given in XYWH format.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Generate masks
|
||||||
|
mask_data = self._generate_masks(image)
|
||||||
|
|
||||||
|
# Filter small disconnected regions and holes in masks
|
||||||
|
if self.min_mask_region_area > 0:
|
||||||
|
mask_data = self.postprocess_small_regions(
|
||||||
|
mask_data,
|
||||||
|
self.min_mask_region_area,
|
||||||
|
max(self.box_nms_thresh, self.crop_nms_thresh),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Encode masks
|
||||||
|
if self.output_mode == 'coco_rle':
|
||||||
|
mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']]
|
||||||
|
elif self.output_mode == 'binary_mask':
|
||||||
|
mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']]
|
||||||
|
else:
|
||||||
|
mask_data['segmentations'] = mask_data['rles']
|
||||||
|
|
||||||
|
# Write mask records
|
||||||
|
curr_anns = []
|
||||||
|
for idx in range(len(mask_data['segmentations'])):
|
||||||
|
ann = {
|
||||||
|
'segmentation': mask_data['segmentations'][idx],
|
||||||
|
'area': area_from_rle(mask_data['rles'][idx]),
|
||||||
|
'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(),
|
||||||
|
'predicted_iou': mask_data['iou_preds'][idx].item(),
|
||||||
|
'point_coords': [mask_data['points'][idx].tolist()],
|
||||||
|
'stability_score': mask_data['stability_score'][idx].item(),
|
||||||
|
'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist(), }
|
||||||
|
curr_anns.append(ann)
|
||||||
|
|
||||||
|
return curr_anns
|
||||||
|
|
||||||
|
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
||||||
|
orig_size = image.shape[:2]
|
||||||
|
crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
|
||||||
|
|
||||||
|
# Iterate over image crops
|
||||||
|
data = MaskData()
|
||||||
|
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
||||||
|
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
||||||
|
data.cat(crop_data)
|
||||||
|
|
||||||
|
# Remove duplicate masks between crops
|
||||||
|
if len(crop_boxes) > 1:
|
||||||
|
# Prefer masks from smaller crops
|
||||||
|
scores = 1 / box_area(data['crop_boxes'])
|
||||||
|
scores = scores.to(data['boxes'].device)
|
||||||
|
keep_by_nms = batched_nms(
|
||||||
|
data['boxes'].float(),
|
||||||
|
scores,
|
||||||
|
torch.zeros_like(data['boxes'][:, 0]), # categories
|
||||||
|
iou_threshold=self.crop_nms_thresh,
|
||||||
|
)
|
||||||
|
data.filter(keep_by_nms)
|
||||||
|
|
||||||
|
data.to_numpy()
|
||||||
|
return data
|
||||||
|
|
||||||
|
def _process_crop(
|
||||||
|
self,
|
||||||
|
image: np.ndarray,
|
||||||
|
crop_box: List[int],
|
||||||
|
crop_layer_idx: int,
|
||||||
|
orig_size: Tuple[int, ...],
|
||||||
|
) -> MaskData:
|
||||||
|
# Crop the image and calculate embeddings
|
||||||
|
x0, y0, x1, y1 = crop_box
|
||||||
|
cropped_im = image[y0:y1, x0:x1, :]
|
||||||
|
cropped_im_size = cropped_im.shape[:2]
|
||||||
|
self.predictor.set_image(cropped_im)
|
||||||
|
|
||||||
|
# Get points for this crop
|
||||||
|
points_scale = np.array(cropped_im_size)[None, ::-1]
|
||||||
|
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
||||||
|
|
||||||
|
# Generate masks for this crop in batches
|
||||||
|
data = MaskData()
|
||||||
|
for (points, ) in batch_iterator(self.points_per_batch, points_for_image):
|
||||||
|
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
||||||
|
data.cat(batch_data)
|
||||||
|
del batch_data
|
||||||
|
self.predictor.reset_image()
|
||||||
|
|
||||||
|
# Remove duplicates within this crop.
|
||||||
|
keep_by_nms = batched_nms(
|
||||||
|
data['boxes'].float(),
|
||||||
|
data['iou_preds'],
|
||||||
|
torch.zeros_like(data['boxes'][:, 0]), # categories
|
||||||
|
iou_threshold=self.box_nms_thresh,
|
||||||
|
)
|
||||||
|
data.filter(keep_by_nms)
|
||||||
|
|
||||||
|
# Return to the original image frame
|
||||||
|
data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box)
|
||||||
|
data['points'] = uncrop_points(data['points'], crop_box)
|
||||||
|
data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))])
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
def _process_batch(
|
||||||
|
self,
|
||||||
|
points: np.ndarray,
|
||||||
|
im_size: Tuple[int, ...],
|
||||||
|
crop_box: List[int],
|
||||||
|
orig_size: Tuple[int, ...],
|
||||||
|
) -> MaskData:
|
||||||
|
orig_h, orig_w = orig_size
|
||||||
|
|
||||||
|
# Run model on this batch
|
||||||
|
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
||||||
|
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
||||||
|
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
||||||
|
masks, iou_preds, _ = self.predictor.predict_torch(
|
||||||
|
in_points[:, None, :],
|
||||||
|
in_labels[:, None],
|
||||||
|
multimask_output=True,
|
||||||
|
return_logits=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Serialize predictions and store in MaskData
|
||||||
|
data = MaskData(
|
||||||
|
masks=masks.flatten(0, 1),
|
||||||
|
iou_preds=iou_preds.flatten(0, 1),
|
||||||
|
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
||||||
|
)
|
||||||
|
del masks
|
||||||
|
|
||||||
|
# Filter by predicted IoU
|
||||||
|
if self.pred_iou_thresh > 0.0:
|
||||||
|
keep_mask = data['iou_preds'] > self.pred_iou_thresh
|
||||||
|
data.filter(keep_mask)
|
||||||
|
|
||||||
|
# Calculate stability score
|
||||||
|
data['stability_score'] = calculate_stability_score(data['masks'], self.predictor.model.mask_threshold,
|
||||||
|
self.stability_score_offset)
|
||||||
|
if self.stability_score_thresh > 0.0:
|
||||||
|
keep_mask = data['stability_score'] >= self.stability_score_thresh
|
||||||
|
data.filter(keep_mask)
|
||||||
|
|
||||||
|
# Threshold masks and calculate boxes
|
||||||
|
data['masks'] = data['masks'] > self.predictor.model.mask_threshold
|
||||||
|
data['boxes'] = batched_mask_to_box(data['masks'])
|
||||||
|
|
||||||
|
# Filter boxes that touch crop boundaries
|
||||||
|
keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
|
||||||
|
if not torch.all(keep_mask):
|
||||||
|
data.filter(keep_mask)
|
||||||
|
|
||||||
|
# Compress to RLE
|
||||||
|
data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w)
|
||||||
|
data['rles'] = mask_to_rle_pytorch(data['masks'])
|
||||||
|
del data['masks']
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
|
||||||
|
"""
|
||||||
|
Removes small disconnected regions and holes in masks, then reruns
|
||||||
|
box NMS to remove any new duplicates.
|
||||||
|
|
||||||
|
Edits mask_data in place.
|
||||||
|
|
||||||
|
Requires open-cv as a dependency.
|
||||||
|
"""
|
||||||
|
if len(mask_data['rles']) == 0:
|
||||||
|
return mask_data
|
||||||
|
|
||||||
|
# Filter small disconnected regions and holes
|
||||||
|
new_masks = []
|
||||||
|
scores = []
|
||||||
|
for rle in mask_data['rles']:
|
||||||
|
mask = rle_to_mask(rle)
|
||||||
|
|
||||||
|
mask, changed = remove_small_regions(mask, min_area, mode='holes')
|
||||||
|
unchanged = not changed
|
||||||
|
mask, changed = remove_small_regions(mask, min_area, mode='islands')
|
||||||
|
unchanged = unchanged and not changed
|
||||||
|
|
||||||
|
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
||||||
|
# Give score=0 to changed masks and score=1 to unchanged masks
|
||||||
|
# so NMS will prefer ones that didn't need postprocessing
|
||||||
|
scores.append(float(unchanged))
|
||||||
|
|
||||||
|
# Recalculate boxes and remove any new duplicates
|
||||||
|
masks = torch.cat(new_masks, dim=0)
|
||||||
|
boxes = batched_mask_to_box(masks)
|
||||||
|
keep_by_nms = batched_nms(
|
||||||
|
boxes.float(),
|
||||||
|
torch.as_tensor(scores),
|
||||||
|
torch.zeros_like(boxes[:, 0]), # categories
|
||||||
|
iou_threshold=nms_thresh,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Only recalculate RLEs for masks that have changed
|
||||||
|
for i_mask in keep_by_nms:
|
||||||
|
if scores[i_mask] == 0.0:
|
||||||
|
mask_torch = masks[i_mask].unsqueeze(0)
|
||||||
|
mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
||||||
|
mask_data['boxes'][i_mask] = boxes[i_mask] # update res directly
|
||||||
|
mask_data.filter(keep_by_nms)
|
||||||
|
|
||||||
|
return mask_data
|
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
240
ultralytics/vit/sam/modules/prompt_predictor.py
Normal file
@ -0,0 +1,240 @@
|
|||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ..autosize import ResizeLongestSide
|
||||||
|
from .sam import Sam
|
||||||
|
|
||||||
|
|
||||||
|
class PromptPredictor:
|
||||||
|
|
||||||
|
def __init__(self, sam_model: Sam) -> None:
|
||||||
|
"""
|
||||||
|
Uses SAM to calculate the image embedding for an image, and then
|
||||||
|
allow repeated, efficient mask prediction given prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
sam_model (Sam): The model to use for mask prediction.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.model = sam_model
|
||||||
|
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
def set_image(self, image: np.ndarray, image_format: str = 'RGB') -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image (np.ndarray): The image for calculating masks. Expects an
|
||||||
|
image in HWC uint8 format, with pixel values in [0, 255].
|
||||||
|
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||||
|
"""
|
||||||
|
assert image_format in {'RGB', 'BGR'}, f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
||||||
|
if image_format != self.model.image_format:
|
||||||
|
image = image[..., ::-1]
|
||||||
|
|
||||||
|
# Transform the image to the form expected by the model
|
||||||
|
input_image = self.transform.apply_image(image)
|
||||||
|
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
||||||
|
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
||||||
|
|
||||||
|
self.set_torch_image(input_image_torch, image.shape[:2])
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def set_torch_image(self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...]) -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method. Expects the input
|
||||||
|
image to be already transformed to the format expected by the model.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformed_image (torch.Tensor): The input image, with shape
|
||||||
|
1x3xHxW, which has been transformed with ResizeLongestSide.
|
||||||
|
original_image_size (tuple(int, int)): The size of the image
|
||||||
|
before transformation, in (H, W) format.
|
||||||
|
"""
|
||||||
|
if len(transformed_image.shape) != 4 \
|
||||||
|
or transformed_image.shape[1] != 3 \
|
||||||
|
or max(*transformed_image.shape[2:]) != self.model.image_encoder.img_size:
|
||||||
|
raise ValueError('set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}.')
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
self.original_size = original_image_size
|
||||||
|
self.input_size = tuple(transformed_image.shape[-2:])
|
||||||
|
input_image = self.model.preprocess(transformed_image)
|
||||||
|
self.features = self.model.image_encoder(input_image)
|
||||||
|
self.is_image_set = True
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[np.ndarray] = None,
|
||||||
|
point_labels: Optional[np.ndarray] = None,
|
||||||
|
box: Optional[np.ndarray] = None,
|
||||||
|
mask_input: Optional[np.ndarray] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (np.ndarray or None): A length N array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||||
|
for SAM, H=W=256.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(np.ndarray): An array of length C containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low resolution logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||||
|
|
||||||
|
# Transform input prompts
|
||||||
|
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
||||||
|
if point_coords is not None:
|
||||||
|
assert (point_labels is not None), 'point_labels must be supplied if point_coords is supplied.'
|
||||||
|
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
||||||
|
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
||||||
|
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
||||||
|
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
||||||
|
if box is not None:
|
||||||
|
box = self.transform.apply_boxes(box, self.original_size)
|
||||||
|
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||||
|
box_torch = box_torch[None, :]
|
||||||
|
if mask_input is not None:
|
||||||
|
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
||||||
|
mask_input_torch = mask_input_torch[None, :, :, :]
|
||||||
|
|
||||||
|
masks, iou_predictions, low_res_masks = self.predict_torch(
|
||||||
|
coords_torch,
|
||||||
|
labels_torch,
|
||||||
|
box_torch,
|
||||||
|
mask_input_torch,
|
||||||
|
multimask_output,
|
||||||
|
return_logits=return_logits,
|
||||||
|
)
|
||||||
|
|
||||||
|
masks_np = masks[0].detach().cpu().numpy()
|
||||||
|
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
||||||
|
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
||||||
|
return masks_np, iou_predictions_np, low_res_masks_np
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def predict_torch(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[torch.Tensor],
|
||||||
|
point_labels: Optional[torch.Tensor],
|
||||||
|
boxes: Optional[torch.Tensor] = None,
|
||||||
|
mask_input: Optional[torch.Tensor] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
Input prompts are batched torch tensors and are expected to already be
|
||||||
|
transformed to the input frame using ResizeLongestSide.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||||
|
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||||
|
predict method do not need further transformation.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(torch.Tensor): An array of shape BxC containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low res logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError('An image must be set with .set_image(...) before mask prediction.')
|
||||||
|
|
||||||
|
points = (point_coords, point_labels) if point_coords is not None else None
|
||||||
|
# Embed prompts
|
||||||
|
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=boxes,
|
||||||
|
masks=mask_input,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Predict masks
|
||||||
|
low_res_masks, iou_predictions = self.model.mask_decoder(
|
||||||
|
image_embeddings=self.features,
|
||||||
|
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Upscale the masks to the original image resolution
|
||||||
|
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
||||||
|
|
||||||
|
if not return_logits:
|
||||||
|
masks = masks > self.model.mask_threshold
|
||||||
|
|
||||||
|
return masks, iou_predictions, low_res_masks
|
||||||
|
|
||||||
|
def get_image_embedding(self) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the image embeddings for the currently set image, with
|
||||||
|
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||||
|
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.')
|
||||||
|
assert self.features is not None, 'Features must exist if an image has been set.'
|
||||||
|
return self.features
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> torch.device:
|
||||||
|
return self.model.device
|
||||||
|
|
||||||
|
def reset_image(self) -> None:
|
||||||
|
"""Resets the currently set image."""
|
||||||
|
self.is_image_set = False
|
||||||
|
self.features = None
|
||||||
|
self.orig_h = None
|
||||||
|
self.orig_w = None
|
||||||
|
self.input_h = None
|
||||||
|
self.input_w = None
|
169
ultralytics/vit/sam/modules/sam.py
Normal file
169
ultralytics/vit/sam/modules/sam.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from .decoders import MaskDecoder
|
||||||
|
from .encoders import ImageEncoderViT, PromptEncoder
|
||||||
|
|
||||||
|
|
||||||
|
class Sam(nn.Module):
|
||||||
|
mask_threshold: float = 0.0
|
||||||
|
image_format: str = 'RGB'
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
image_encoder: ImageEncoderViT,
|
||||||
|
prompt_encoder: PromptEncoder,
|
||||||
|
mask_decoder: MaskDecoder,
|
||||||
|
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
||||||
|
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
SAM predicts object masks from an image and input prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_encoder (ImageEncoderViT): The backbone used to encode the
|
||||||
|
image into image embeddings that allow for efficient mask prediction.
|
||||||
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||||
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
||||||
|
and encoded prompts.
|
||||||
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||||
|
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.image_encoder = image_encoder
|
||||||
|
self.prompt_encoder = prompt_encoder
|
||||||
|
self.mask_decoder = mask_decoder
|
||||||
|
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||||
|
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> Any:
|
||||||
|
return self.pixel_mean.device
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batched_input: List[Dict[str, Any]],
|
||||||
|
multimask_output: bool,
|
||||||
|
) -> List[Dict[str, torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Predicts masks end-to-end from provided images and prompts.
|
||||||
|
If prompts are not known in advance, using SamPredictor is
|
||||||
|
recommended over calling the model directly.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batched_input (list(dict)): A list over input images, each a
|
||||||
|
dictionary with the following keys. A prompt key can be
|
||||||
|
excluded if it is not present.
|
||||||
|
'image': The image as a torch tensor in 3xHxW format,
|
||||||
|
already transformed for input to the model.
|
||||||
|
'original_size': (tuple(int, int)) The original size of
|
||||||
|
the image before transformation, as (H, W).
|
||||||
|
'point_coords': (torch.Tensor) Batched point prompts for
|
||||||
|
this image, with shape BxNx2. Already transformed to the
|
||||||
|
input frame of the model.
|
||||||
|
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
||||||
|
with shape BxN.
|
||||||
|
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
||||||
|
Already transformed to the input frame of the model.
|
||||||
|
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
||||||
|
in the form Bx1xHxW.
|
||||||
|
multimask_output (bool): Whether the model should predict multiple
|
||||||
|
disambiguating masks, or return a single mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(list(dict)): A list over input images, where each element is
|
||||||
|
as dictionary with the following keys.
|
||||||
|
'masks': (torch.Tensor) Batched binary mask predictions,
|
||||||
|
with shape BxCxHxW, where B is the number of input prompts,
|
||||||
|
C is determined by multimask_output, and (H, W) is the
|
||||||
|
original size of the image.
|
||||||
|
'iou_predictions': (torch.Tensor) The model's predictions
|
||||||
|
of mask quality, in shape BxC.
|
||||||
|
'low_res_logits': (torch.Tensor) Low resolution logits with
|
||||||
|
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
||||||
|
to subsequent iterations of prediction.
|
||||||
|
"""
|
||||||
|
input_images = torch.stack([self.preprocess(x['image']) for x in batched_input], dim=0)
|
||||||
|
image_embeddings = self.image_encoder(input_images)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
||||||
|
if 'point_coords' in image_record:
|
||||||
|
points = (image_record['point_coords'], image_record['point_labels'])
|
||||||
|
else:
|
||||||
|
points = None
|
||||||
|
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=image_record.get('boxes', None),
|
||||||
|
masks=image_record.get('mask_inputs', None),
|
||||||
|
)
|
||||||
|
low_res_masks, iou_predictions = self.mask_decoder(
|
||||||
|
image_embeddings=curr_embedding.unsqueeze(0),
|
||||||
|
image_pe=self.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
)
|
||||||
|
masks = self.postprocess_masks(
|
||||||
|
low_res_masks,
|
||||||
|
input_size=image_record['image'].shape[-2:],
|
||||||
|
original_size=image_record['original_size'],
|
||||||
|
)
|
||||||
|
masks = masks > self.mask_threshold
|
||||||
|
outputs.append({
|
||||||
|
'masks': masks,
|
||||||
|
'iou_predictions': iou_predictions,
|
||||||
|
'low_res_logits': low_res_masks, })
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def postprocess_masks(
|
||||||
|
self,
|
||||||
|
masks: torch.Tensor,
|
||||||
|
input_size: Tuple[int, ...],
|
||||||
|
original_size: Tuple[int, ...],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Remove padding and upscale masks to the original image size.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
masks (torch.Tensor): Batched masks from the mask_decoder,
|
||||||
|
in BxCxHxW format.
|
||||||
|
input_size (tuple(int, int)): The size of the image input to the
|
||||||
|
model, in (H, W) format. Used to remove padding.
|
||||||
|
original_size (tuple(int, int)): The original size of the image
|
||||||
|
before resizing for input to the model, in (H, W) format.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
||||||
|
is given by original_size.
|
||||||
|
"""
|
||||||
|
masks = F.interpolate(
|
||||||
|
masks,
|
||||||
|
(self.image_encoder.img_size, self.image_encoder.img_size),
|
||||||
|
mode='bilinear',
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
masks = masks[..., :input_size[0], :input_size[1]]
|
||||||
|
masks = F.interpolate(masks, original_size, mode='bilinear', align_corners=False)
|
||||||
|
return masks
|
||||||
|
|
||||||
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Normalize pixel values and pad to a square input."""
|
||||||
|
# Normalize colors
|
||||||
|
x = (x - self.pixel_mean) / self.pixel_std
|
||||||
|
|
||||||
|
# Pad
|
||||||
|
h, w = x.shape[-2:]
|
||||||
|
padh = self.image_encoder.img_size - h
|
||||||
|
padw = self.image_encoder.img_size - w
|
||||||
|
return F.pad(x, (0, padw, 0, padh))
|
233
ultralytics/vit/sam/modules/transformer.py
Normal file
233
ultralytics/vit/sam/modules/transformer.py
Normal file
@ -0,0 +1,233 @@
|
|||||||
|
import math
|
||||||
|
from typing import Tuple, Type
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from ultralytics.nn.modules import MLPBlock
|
||||||
|
|
||||||
|
|
||||||
|
class TwoWayTransformer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
depth: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_dim: int,
|
||||||
|
activation: Type[nn.Module] = nn.ReLU,
|
||||||
|
attention_downsample_rate: int = 2,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
A transformer decoder that attends to an input image using
|
||||||
|
queries whose positional embedding is supplied.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
depth (int): number of layers in the transformer
|
||||||
|
embedding_dim (int): the channel dimension for the input embeddings
|
||||||
|
num_heads (int): the number of heads for multihead attention. Must
|
||||||
|
divide embedding_dim
|
||||||
|
mlp_dim (int): the channel dimension internal to the MLP block
|
||||||
|
activation (nn.Module): the activation to use in the MLP block
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.depth = depth
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.mlp_dim = mlp_dim
|
||||||
|
self.layers = nn.ModuleList()
|
||||||
|
|
||||||
|
for i in range(depth):
|
||||||
|
self.layers.append(
|
||||||
|
TwoWayAttentionBlock(
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_dim=mlp_dim,
|
||||||
|
activation=activation,
|
||||||
|
attention_downsample_rate=attention_downsample_rate,
|
||||||
|
skip_first_layer_pe=(i == 0),
|
||||||
|
))
|
||||||
|
|
||||||
|
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||||
|
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
image_embedding: Tensor,
|
||||||
|
image_pe: Tensor,
|
||||||
|
point_embedding: Tensor,
|
||||||
|
) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
image_embedding (torch.Tensor): image to attend to. Should be shape
|
||||||
|
B x embedding_dim x h x w for any h and w.
|
||||||
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
||||||
|
have the same shape as image_embedding.
|
||||||
|
point_embedding (torch.Tensor): the embedding to add to the query points.
|
||||||
|
Must have shape B x N_points x embedding_dim for any N_points.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: the processed point_embedding
|
||||||
|
torch.Tensor: the processed image_embedding
|
||||||
|
"""
|
||||||
|
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||||
|
bs, c, h, w = image_embedding.shape
|
||||||
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||||
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||||
|
|
||||||
|
# Prepare queries
|
||||||
|
queries = point_embedding
|
||||||
|
keys = image_embedding
|
||||||
|
|
||||||
|
# Apply transformer blocks and final layernorm
|
||||||
|
for layer in self.layers:
|
||||||
|
queries, keys = layer(
|
||||||
|
queries=queries,
|
||||||
|
keys=keys,
|
||||||
|
query_pe=point_embedding,
|
||||||
|
key_pe=image_pe,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply the final attention layer from the points to the image
|
||||||
|
q = queries + point_embedding
|
||||||
|
k = keys + image_pe
|
||||||
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm_final_attn(queries)
|
||||||
|
|
||||||
|
return queries, keys
|
||||||
|
|
||||||
|
|
||||||
|
class TwoWayAttentionBlock(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_dim: int = 2048,
|
||||||
|
activation: Type[nn.Module] = nn.ReLU,
|
||||||
|
attention_downsample_rate: int = 2,
|
||||||
|
skip_first_layer_pe: bool = False,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
A transformer block with four layers: (1) self-attention of sparse
|
||||||
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
||||||
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
||||||
|
inputs.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
embedding_dim (int): the channel dimension of the embeddings
|
||||||
|
num_heads (int): the number of heads in the attention layers
|
||||||
|
mlp_dim (int): the hidden dimension of the mlp block
|
||||||
|
activation (nn.Module): the activation of the mlp block
|
||||||
|
skip_first_layer_pe (bool): skip the PE on the first layer
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = Attention(embedding_dim, num_heads)
|
||||||
|
self.norm1 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||||
|
self.norm2 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
||||||
|
self.norm3 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.norm4 = nn.LayerNorm(embedding_dim)
|
||||||
|
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||||
|
|
||||||
|
self.skip_first_layer_pe = skip_first_layer_pe
|
||||||
|
|
||||||
|
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""Apply self-attention and cross-attention to queries and keys and return the processed embeddings."""
|
||||||
|
|
||||||
|
# Self attention block
|
||||||
|
if self.skip_first_layer_pe:
|
||||||
|
queries = self.self_attn(q=queries, k=queries, v=queries)
|
||||||
|
else:
|
||||||
|
q = queries + query_pe
|
||||||
|
attn_out = self.self_attn(q=q, k=q, v=queries)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm1(queries)
|
||||||
|
|
||||||
|
# Cross attention block, tokens attending to image embedding
|
||||||
|
q = queries + query_pe
|
||||||
|
k = keys + key_pe
|
||||||
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm2(queries)
|
||||||
|
|
||||||
|
# MLP block
|
||||||
|
mlp_out = self.mlp(queries)
|
||||||
|
queries = queries + mlp_out
|
||||||
|
queries = self.norm3(queries)
|
||||||
|
|
||||||
|
# Cross attention block, image embedding attending to tokens
|
||||||
|
q = queries + query_pe
|
||||||
|
k = keys + key_pe
|
||||||
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
||||||
|
keys = keys + attn_out
|
||||||
|
keys = self.norm4(keys)
|
||||||
|
|
||||||
|
return queries, keys
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""
|
||||||
|
An attention layer that allows for downscaling the size of the embedding
|
||||||
|
after projection to queries, keys, and values.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
downsample_rate: int = 1,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.internal_dim = embedding_dim // downsample_rate
|
||||||
|
self.num_heads = num_heads
|
||||||
|
assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.'
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||||
|
|
||||||
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||||
|
"""Separate the input tensor into the specified number of attention heads."""
|
||||||
|
b, n, c = x.shape
|
||||||
|
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||||
|
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||||
|
|
||||||
|
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||||
|
"""Recombine the separated attention heads into a single tensor."""
|
||||||
|
b, n_heads, n_tokens, c_per_head = x.shape
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
||||||
|
|
||||||
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
||||||
|
"""Compute the attention output given the input query, key, and value tensors."""
|
||||||
|
|
||||||
|
# Input projections
|
||||||
|
q = self.q_proj(q)
|
||||||
|
k = self.k_proj(k)
|
||||||
|
v = self.v_proj(v)
|
||||||
|
|
||||||
|
# Separate into heads
|
||||||
|
q = self._separate_heads(q, self.num_heads)
|
||||||
|
k = self._separate_heads(k, self.num_heads)
|
||||||
|
v = self._separate_heads(v, self.num_heads)
|
||||||
|
|
||||||
|
# Attention
|
||||||
|
_, _, _, c_per_head = q.shape
|
||||||
|
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
||||||
|
attn = attn / math.sqrt(c_per_head)
|
||||||
|
attn = torch.softmax(attn, dim=-1)
|
||||||
|
|
||||||
|
# Get output
|
||||||
|
out = attn @ v
|
||||||
|
out = self._recombine_heads(out)
|
||||||
|
out = self.out_proj(out)
|
||||||
|
|
||||||
|
return out
|
52
ultralytics/vit/sam/predict.py
Normal file
52
ultralytics/vit/sam/predict.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||||
|
from ultralytics.yolo.engine.results import Results
|
||||||
|
from ultralytics.yolo.utils.torch_utils import select_device
|
||||||
|
|
||||||
|
from .modules.mask_generator import SamAutomaticMaskGenerator
|
||||||
|
|
||||||
|
|
||||||
|
class Predictor(BasePredictor):
|
||||||
|
|
||||||
|
def preprocess(self, im):
|
||||||
|
"""Prepares input image for inference."""
|
||||||
|
# TODO: Only support bs=1 for now
|
||||||
|
# im = ResizeLongestSide(1024).apply_image(im[0])
|
||||||
|
# im = torch.as_tensor(im, device=self.device)
|
||||||
|
# im = im.permute(2, 0, 1).contiguous()[None, :, :, :]
|
||||||
|
return im[0]
|
||||||
|
|
||||||
|
def setup_model(self, model):
|
||||||
|
"""Set up YOLO model with specified thresholds and device."""
|
||||||
|
device = select_device(self.args.device)
|
||||||
|
model.eval()
|
||||||
|
self.model = SamAutomaticMaskGenerator(model.to(device),
|
||||||
|
pred_iou_thresh=self.args.conf,
|
||||||
|
box_nms_thresh=self.args.iou)
|
||||||
|
self.device = device
|
||||||
|
# TODO: Temporary settings for compatibility
|
||||||
|
self.model.pt = False
|
||||||
|
self.model.triton = False
|
||||||
|
self.model.stride = 32
|
||||||
|
self.model.fp16 = False
|
||||||
|
self.done_warmup = True
|
||||||
|
|
||||||
|
def postprocess(self, preds, path, orig_imgs):
|
||||||
|
"""Postprocesses inference output predictions to create detection masks for objects."""
|
||||||
|
names = dict(enumerate(list(range(len(preds)))))
|
||||||
|
results = []
|
||||||
|
# TODO
|
||||||
|
for i, pred in enumerate([preds]):
|
||||||
|
masks = torch.from_numpy(np.stack([p['segmentation'] for p in pred], axis=0))
|
||||||
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||||
|
path = self.batch[0]
|
||||||
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
|
results.append(Results(orig_img=orig_img, path=img_path, names=names, masks=masks))
|
||||||
|
return results
|
||||||
|
|
||||||
|
# def __call__(self, source=None, model=None, stream=False):
|
||||||
|
# frame = cv2.imread(source)
|
||||||
|
# preds = self.model.generate(frame)
|
||||||
|
# return self.postprocess(preds, source, frame)
|
@ -25,7 +25,6 @@ verbose: True # whether to print verbose output
|
|||||||
seed: 0 # random seed for reproducibility
|
seed: 0 # random seed for reproducibility
|
||||||
deterministic: True # whether to enable deterministic mode
|
deterministic: True # whether to enable deterministic mode
|
||||||
single_cls: False # train multi-class data as single-class
|
single_cls: False # train multi-class data as single-class
|
||||||
image_weights: False # use weighted image selection for training
|
|
||||||
rect: False # rectangular training if mode='train' or rectangular validation if mode='val'
|
rect: False # rectangular training if mode='train' or rectangular validation if mode='val'
|
||||||
cos_lr: False # use cosine learning rate scheduler
|
cos_lr: False # use cosine learning rate scheduler
|
||||||
close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
|
close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
|
||||||
|
@ -1,9 +1,9 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
from .base import BaseDataset
|
from .base import BaseDataset
|
||||||
from .build import build_classification_dataloader, build_dataloader, load_inference_source
|
from .build import build_dataloader, build_yolo_dataset, load_inference_source
|
||||||
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
|
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
|
||||||
from .dataset_wrappers import MixAndRectDataset
|
from .dataset_wrappers import MixAndRectDataset
|
||||||
|
|
||||||
__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset',
|
__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset',
|
||||||
'build_classification_dataloader', 'build_dataloader', 'load_inference_source')
|
'build_yolo_dataset', 'build_dataloader', 'load_inference_source')
|
||||||
|
42
ultralytics/yolo/data/annotator.py
Normal file
42
ultralytics/yolo/data/annotator.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from ultralytics import YOLO
|
||||||
|
from ultralytics.vit.sam import PromptPredictor, build_sam
|
||||||
|
from ultralytics.yolo.utils.torch_utils import select_device
|
||||||
|
|
||||||
|
|
||||||
|
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
|
||||||
|
device = select_device(device)
|
||||||
|
det_model = YOLO(det_model)
|
||||||
|
sam_model = build_sam(sam_model)
|
||||||
|
det_model.to(device)
|
||||||
|
sam_model.to(device)
|
||||||
|
|
||||||
|
if not output_dir:
|
||||||
|
output_dir = Path(str(data)).parent / 'labels'
|
||||||
|
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
|
prompt_predictor = PromptPredictor(sam_model)
|
||||||
|
det_results = det_model(data, stream=True)
|
||||||
|
|
||||||
|
for result in det_results:
|
||||||
|
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
||||||
|
class_ids = result.boxes.cls.int().tolist() # noqa
|
||||||
|
prompt_predictor.set_image(result.orig_img)
|
||||||
|
masks, _, _ = prompt_predictor.predict_torch(
|
||||||
|
point_coords=None,
|
||||||
|
point_labels=None,
|
||||||
|
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]),
|
||||||
|
multimask_output=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
result.update(masks=masks.squeeze(1))
|
||||||
|
segments = result.masks.xyn # noqa
|
||||||
|
|
||||||
|
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
|
||||||
|
for i in range(len(segments)):
|
||||||
|
s = segments[i]
|
||||||
|
if len(s) == 0:
|
||||||
|
continue
|
||||||
|
segment = map(str, segments[i].reshape(-1).tolist())
|
||||||
|
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')
|
@ -24,17 +24,17 @@ class BaseDataset(Dataset):
|
|||||||
Base dataset class for loading and processing image data.
|
Base dataset class for loading and processing image data.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
img_path (str): Image path.
|
img_path (str): Path to the folder containing images.
|
||||||
imgsz (int): Target image size for resizing. Default is 640.
|
imgsz (int, optional): Image size. Defaults to 640.
|
||||||
cache (bool): Cache images in memory or on disk for faster loading. Default is False.
|
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
|
||||||
augment (bool): Apply data augmentation. Default is True.
|
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
|
||||||
hyp (dict): Dictionary of hyperparameters for data augmentation. Default is None.
|
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
|
||||||
prefix (str): Prefix for file paths. Default is an empty string.
|
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
|
||||||
rect (bool): Enable rectangular training. Default is False.
|
rect (bool, optional): If True, rectangular training is used. Defaults to False.
|
||||||
batch_size (int): Batch size for rectangular training. Default is None.
|
batch_size (int, optional): Size of batches. Defaults to None.
|
||||||
stride (int): Stride for rectangular training. Default is 32.
|
stride (int, optional): Stride. Defaults to 32.
|
||||||
pad (float): Padding for rectangular training. Default is 0.5.
|
pad (float, optional): Padding. Defaults to 0.0.
|
||||||
single_cls (bool): Use a single class for all labels. Default is False.
|
single_cls (bool, optional): If True, single class training is used. Defaults to False.
|
||||||
classes (list): List of included classes. Default is None.
|
classes (list): List of included classes. Default is None.
|
||||||
|
|
||||||
Attributes:
|
Attributes:
|
||||||
|
@ -14,9 +14,8 @@ from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImage
|
|||||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||||
from ultralytics.yolo.utils.checks import check_file
|
from ultralytics.yolo.utils.checks import check_file
|
||||||
|
|
||||||
from ..utils import LOGGER, RANK, colorstr
|
from ..utils import RANK, colorstr
|
||||||
from ..utils.torch_utils import torch_distributed_zero_first
|
from .dataset import YOLODataset
|
||||||
from .dataset import ClassificationDataset, YOLODataset
|
|
||||||
from .utils import PIN_MEMORY
|
from .utils import PIN_MEMORY
|
||||||
|
|
||||||
|
|
||||||
@ -70,34 +69,31 @@ def seed_worker(worker_id): # noqa
|
|||||||
random.seed(worker_seed)
|
random.seed(worker_seed)
|
||||||
|
|
||||||
|
|
||||||
def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, rank=-1, mode='train'):
|
def build_yolo_dataset(cfg, img_path, batch, data_info, mode='train', rect=False, stride=32):
|
||||||
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
"""Build YOLO Dataset"""
|
||||||
assert mode in ['train', 'val']
|
dataset = YOLODataset(
|
||||||
shuffle = mode == 'train'
|
img_path=img_path,
|
||||||
if cfg.rect and shuffle:
|
imgsz=cfg.imgsz,
|
||||||
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
batch_size=batch,
|
||||||
shuffle = False
|
augment=mode == 'train', # augmentation
|
||||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
||||||
dataset = YOLODataset(
|
rect=cfg.rect or rect, # rectangular batches
|
||||||
img_path=img_path,
|
cache=cfg.cache or None,
|
||||||
imgsz=cfg.imgsz,
|
single_cls=cfg.single_cls or False,
|
||||||
batch_size=batch,
|
stride=int(stride),
|
||||||
augment=mode == 'train', # augmentation
|
pad=0.0 if mode == 'train' else 0.5,
|
||||||
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
prefix=colorstr(f'{mode}: '),
|
||||||
rect=cfg.rect or rect, # rectangular batches
|
use_segments=cfg.task == 'segment',
|
||||||
cache=cfg.cache or None,
|
use_keypoints=cfg.task == 'pose',
|
||||||
single_cls=cfg.single_cls or False,
|
classes=cfg.classes,
|
||||||
stride=int(stride),
|
data=data_info)
|
||||||
pad=0.0 if mode == 'train' else 0.5,
|
return dataset
|
||||||
prefix=colorstr(f'{mode}: '),
|
|
||||||
use_segments=cfg.task == 'segment',
|
|
||||||
use_keypoints=cfg.task == 'pose',
|
|
||||||
classes=cfg.classes,
|
|
||||||
data=data_info)
|
|
||||||
|
|
||||||
|
|
||||||
|
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
|
||||||
|
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
||||||
batch = min(batch, len(dataset))
|
batch = min(batch, len(dataset))
|
||||||
nd = torch.cuda.device_count() # number of CUDA devices
|
nd = torch.cuda.device_count() # number of CUDA devices
|
||||||
workers = cfg.workers if mode == 'train' else cfg.workers * 2
|
|
||||||
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
|
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
|
||||||
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||||||
generator = torch.Generator()
|
generator = torch.Generator()
|
||||||
@ -110,36 +106,7 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
|
|||||||
pin_memory=PIN_MEMORY,
|
pin_memory=PIN_MEMORY,
|
||||||
collate_fn=getattr(dataset, 'collate_fn', None),
|
collate_fn=getattr(dataset, 'collate_fn', None),
|
||||||
worker_init_fn=seed_worker,
|
worker_init_fn=seed_worker,
|
||||||
generator=generator), dataset
|
generator=generator)
|
||||||
|
|
||||||
|
|
||||||
# Build classification
|
|
||||||
# TODO: using cfg like `build_dataloader`
|
|
||||||
def build_classification_dataloader(path,
|
|
||||||
imgsz=224,
|
|
||||||
batch_size=16,
|
|
||||||
augment=True,
|
|
||||||
cache=False,
|
|
||||||
rank=-1,
|
|
||||||
workers=8,
|
|
||||||
shuffle=True):
|
|
||||||
"""Returns Dataloader object to be used with YOLOv5 Classifier."""
|
|
||||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
||||||
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
|
||||||
batch_size = min(batch_size, len(dataset))
|
|
||||||
nd = torch.cuda.device_count()
|
|
||||||
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
|
||||||
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
||||||
generator = torch.Generator()
|
|
||||||
generator.manual_seed(6148914691236517205 + RANK)
|
|
||||||
return InfiniteDataLoader(dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=shuffle and sampler is None,
|
|
||||||
num_workers=nw,
|
|
||||||
sampler=sampler,
|
|
||||||
pin_memory=PIN_MEMORY,
|
|
||||||
worker_init_fn=seed_worker,
|
|
||||||
generator=generator) # or DataLoader(persistent_workers=True)
|
|
||||||
|
|
||||||
|
|
||||||
def check_source(source):
|
def check_source(source):
|
||||||
@ -168,7 +135,7 @@ def check_source(source):
|
|||||||
return source, webcam, screenshot, from_img, in_memory, tensor
|
return source, webcam, screenshot, from_img, in_memory, tensor
|
||||||
|
|
||||||
|
|
||||||
def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1, stride=32, auto=True):
|
def load_inference_source(source=None, imgsz=640, vid_stride=1):
|
||||||
"""
|
"""
|
||||||
Loads an inference source for object detection and applies necessary transformations.
|
Loads an inference source for object detection and applies necessary transformations.
|
||||||
|
|
||||||
@ -192,23 +159,13 @@ def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1,
|
|||||||
elif in_memory:
|
elif in_memory:
|
||||||
dataset = source
|
dataset = source
|
||||||
elif webcam:
|
elif webcam:
|
||||||
dataset = LoadStreams(source,
|
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride)
|
||||||
imgsz=imgsz,
|
|
||||||
stride=stride,
|
|
||||||
auto=auto,
|
|
||||||
transforms=transforms,
|
|
||||||
vid_stride=vid_stride)
|
|
||||||
elif screenshot:
|
elif screenshot:
|
||||||
dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
|
dataset = LoadScreenshots(source, imgsz=imgsz)
|
||||||
elif from_img:
|
elif from_img:
|
||||||
dataset = LoadPilAndNumpy(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms)
|
dataset = LoadPilAndNumpy(source, imgsz=imgsz)
|
||||||
else:
|
else:
|
||||||
dataset = LoadImages(source,
|
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride)
|
||||||
imgsz=imgsz,
|
|
||||||
stride=stride,
|
|
||||||
auto=auto,
|
|
||||||
transforms=transforms,
|
|
||||||
vid_stride=vid_stride)
|
|
||||||
|
|
||||||
# Attach source types to the dataset
|
# Attach source types to the dataset
|
||||||
setattr(dataset, 'source_type', source_type)
|
setattr(dataset, 'source_type', source_type)
|
||||||
|
@ -15,7 +15,6 @@ import requests
|
|||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
from ultralytics.yolo.data.augment import LetterBox
|
|
||||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||||
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
|
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
|
||||||
from ultralytics.yolo.utils.checks import check_requirements
|
from ultralytics.yolo.utils.checks import check_requirements
|
||||||
@ -31,12 +30,11 @@ class SourceTypes:
|
|||||||
|
|
||||||
class LoadStreams:
|
class LoadStreams:
|
||||||
# YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
# YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
||||||
def __init__(self, sources='file.streams', imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1):
|
||||||
"""Initialize instance variables and check for consistent input stream shapes."""
|
"""Initialize instance variables and check for consistent input stream shapes."""
|
||||||
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
||||||
self.mode = 'stream'
|
self.mode = 'stream'
|
||||||
self.imgsz = imgsz
|
self.imgsz = imgsz
|
||||||
self.stride = stride
|
|
||||||
self.vid_stride = vid_stride # video frame-rate stride
|
self.vid_stride = vid_stride # video frame-rate stride
|
||||||
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
||||||
n = len(sources)
|
n = len(sources)
|
||||||
@ -72,10 +70,6 @@ class LoadStreams:
|
|||||||
LOGGER.info('') # newline
|
LOGGER.info('') # newline
|
||||||
|
|
||||||
# Check for common shapes
|
# Check for common shapes
|
||||||
s = np.stack([LetterBox(imgsz, auto, stride=stride)(image=x).shape for x in self.imgs])
|
|
||||||
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
|
||||||
self.auto = auto and self.rect
|
|
||||||
self.transforms = transforms # optional
|
|
||||||
self.bs = self.__len__()
|
self.bs = self.__len__()
|
||||||
|
|
||||||
if not self.rect:
|
if not self.rect:
|
||||||
@ -110,14 +104,7 @@ class LoadStreams:
|
|||||||
raise StopIteration
|
raise StopIteration
|
||||||
|
|
||||||
im0 = self.imgs.copy()
|
im0 = self.imgs.copy()
|
||||||
if self.transforms:
|
return self.sources, im0, None, ''
|
||||||
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
|
||||||
else:
|
|
||||||
im = np.stack([LetterBox(self.imgsz, self.auto, stride=self.stride)(image=x) for x in im0])
|
|
||||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
|
||||||
im = np.ascontiguousarray(im) # contiguous
|
|
||||||
|
|
||||||
return self.sources, im, im0, None, ''
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
"""Return the length of the sources object."""
|
"""Return the length of the sources object."""
|
||||||
@ -126,7 +113,7 @@ class LoadStreams:
|
|||||||
|
|
||||||
class LoadScreenshots:
|
class LoadScreenshots:
|
||||||
# YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`
|
# YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`
|
||||||
def __init__(self, source, imgsz=640, stride=32, auto=True, transforms=None):
|
def __init__(self, source, imgsz=640):
|
||||||
"""source = [screen_number left top width height] (pixels)."""
|
"""source = [screen_number left top width height] (pixels)."""
|
||||||
check_requirements('mss')
|
check_requirements('mss')
|
||||||
import mss # noqa
|
import mss # noqa
|
||||||
@ -140,9 +127,6 @@ class LoadScreenshots:
|
|||||||
elif len(params) == 5:
|
elif len(params) == 5:
|
||||||
self.screen, left, top, width, height = (int(x) for x in params)
|
self.screen, left, top, width, height = (int(x) for x in params)
|
||||||
self.imgsz = imgsz
|
self.imgsz = imgsz
|
||||||
self.stride = stride
|
|
||||||
self.transforms = transforms
|
|
||||||
self.auto = auto
|
|
||||||
self.mode = 'stream'
|
self.mode = 'stream'
|
||||||
self.frame = 0
|
self.frame = 0
|
||||||
self.sct = mss.mss()
|
self.sct = mss.mss()
|
||||||
@ -165,19 +149,13 @@ class LoadScreenshots:
|
|||||||
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
||||||
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
|
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
|
||||||
|
|
||||||
if self.transforms:
|
|
||||||
im = self.transforms(im0) # transforms
|
|
||||||
else:
|
|
||||||
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
|
|
||||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
||||||
im = np.ascontiguousarray(im) # contiguous
|
|
||||||
self.frame += 1
|
self.frame += 1
|
||||||
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
return str(self.screen), im0, None, s # screen, img, original img, im0s, s
|
||||||
|
|
||||||
|
|
||||||
class LoadImages:
|
class LoadImages:
|
||||||
# YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
|
# YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
|
||||||
def __init__(self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
def __init__(self, path, imgsz=640, vid_stride=1):
|
||||||
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
|
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
|
||||||
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
|
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
|
||||||
path = Path(path).read_text().rsplit()
|
path = Path(path).read_text().rsplit()
|
||||||
@ -198,13 +176,10 @@ class LoadImages:
|
|||||||
ni, nv = len(images), len(videos)
|
ni, nv = len(images), len(videos)
|
||||||
|
|
||||||
self.imgsz = imgsz
|
self.imgsz = imgsz
|
||||||
self.stride = stride
|
|
||||||
self.files = images + videos
|
self.files = images + videos
|
||||||
self.nf = ni + nv # number of files
|
self.nf = ni + nv # number of files
|
||||||
self.video_flag = [False] * ni + [True] * nv
|
self.video_flag = [False] * ni + [True] * nv
|
||||||
self.mode = 'image'
|
self.mode = 'image'
|
||||||
self.auto = auto
|
|
||||||
self.transforms = transforms # optional
|
|
||||||
self.vid_stride = vid_stride # video frame-rate stride
|
self.vid_stride = vid_stride # video frame-rate stride
|
||||||
self.bs = 1
|
self.bs = 1
|
||||||
if any(videos):
|
if any(videos):
|
||||||
@ -254,14 +229,7 @@ class LoadImages:
|
|||||||
raise FileNotFoundError(f'Image Not Found {path}')
|
raise FileNotFoundError(f'Image Not Found {path}')
|
||||||
s = f'image {self.count}/{self.nf} {path}: '
|
s = f'image {self.count}/{self.nf} {path}: '
|
||||||
|
|
||||||
if self.transforms:
|
return [path], [im0], self.cap, s
|
||||||
im = self.transforms(im0) # transforms
|
|
||||||
else:
|
|
||||||
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
|
|
||||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
||||||
im = np.ascontiguousarray(im) # contiguous
|
|
||||||
|
|
||||||
return path, im, im0, self.cap, s
|
|
||||||
|
|
||||||
def _new_video(self, path):
|
def _new_video(self, path):
|
||||||
"""Create a new video capture object."""
|
"""Create a new video capture object."""
|
||||||
@ -290,16 +258,13 @@ class LoadImages:
|
|||||||
|
|
||||||
class LoadPilAndNumpy:
|
class LoadPilAndNumpy:
|
||||||
|
|
||||||
def __init__(self, im0, imgsz=640, stride=32, auto=True, transforms=None):
|
def __init__(self, im0, imgsz=640):
|
||||||
"""Initialize PIL and Numpy Dataloader."""
|
"""Initialize PIL and Numpy Dataloader."""
|
||||||
if not isinstance(im0, list):
|
if not isinstance(im0, list):
|
||||||
im0 = [im0]
|
im0 = [im0]
|
||||||
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
|
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
|
||||||
self.im0 = [self._single_check(im) for im in im0]
|
self.im0 = [self._single_check(im) for im in im0]
|
||||||
self.imgsz = imgsz
|
self.imgsz = imgsz
|
||||||
self.stride = stride
|
|
||||||
self.auto = auto
|
|
||||||
self.transforms = transforms
|
|
||||||
self.mode = 'image'
|
self.mode = 'image'
|
||||||
# Generate fake paths
|
# Generate fake paths
|
||||||
self.bs = len(self.im0)
|
self.bs = len(self.im0)
|
||||||
@ -315,16 +280,6 @@ class LoadPilAndNumpy:
|
|||||||
im = np.ascontiguousarray(im) # contiguous
|
im = np.ascontiguousarray(im) # contiguous
|
||||||
return im
|
return im
|
||||||
|
|
||||||
def _single_preprocess(self, im, auto):
|
|
||||||
"""Preprocesses a single image for inference."""
|
|
||||||
if self.transforms:
|
|
||||||
im = self.transforms(im) # transforms
|
|
||||||
else:
|
|
||||||
im = LetterBox(self.imgsz, auto=auto, stride=self.stride)(image=im)
|
|
||||||
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
||||||
im = np.ascontiguousarray(im) # contiguous
|
|
||||||
return im
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
"""Returns the length of the 'im0' attribute."""
|
"""Returns the length of the 'im0' attribute."""
|
||||||
return len(self.im0)
|
return len(self.im0)
|
||||||
@ -333,11 +288,8 @@ class LoadPilAndNumpy:
|
|||||||
"""Returns batch paths, images, processed images, None, ''."""
|
"""Returns batch paths, images, processed images, None, ''."""
|
||||||
if self.count == 1: # loop only once as it's batch inference
|
if self.count == 1: # loop only once as it's batch inference
|
||||||
raise StopIteration
|
raise StopIteration
|
||||||
auto = all(x.shape == self.im0[0].shape for x in self.im0) and self.auto
|
|
||||||
im = [self._single_preprocess(im, auto) for im in self.im0]
|
|
||||||
im = np.stack(im, 0) if len(im) > 1 else im[0][None]
|
|
||||||
self.count += 1
|
self.count += 1
|
||||||
return self.paths, im, self.im0, None, ''
|
return self.paths, self.im0, None, ''
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
"""Enables iteration for class LoadPilAndNumpy."""
|
"""Enables iteration for class LoadPilAndNumpy."""
|
||||||
@ -362,7 +314,7 @@ class LoadTensor:
|
|||||||
if self.count == 1:
|
if self.count == 1:
|
||||||
raise StopIteration
|
raise StopIteration
|
||||||
self.count += 1
|
self.count += 1
|
||||||
return None, self.im0, self.im0, None, '' # self.paths, im, self.im0, None, ''
|
return None, self.im0, None, '' # self.paths, im, self.im0, None, ''
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
"""Returns the batch size."""
|
"""Returns the batch size."""
|
||||||
|
@ -21,21 +21,9 @@ class YOLODataset(BaseDataset):
|
|||||||
Dataset class for loading object detection and/or segmentation labels in YOLO format.
|
Dataset class for loading object detection and/or segmentation labels in YOLO format.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
img_path (str): Path to the folder containing images.
|
data (dict, optional): A dataset YAML dictionary. Defaults to None.
|
||||||
imgsz (int, optional): Image size. Defaults to 640.
|
|
||||||
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
|
|
||||||
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
|
|
||||||
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
|
|
||||||
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
|
|
||||||
rect (bool, optional): If True, rectangular training is used. Defaults to False.
|
|
||||||
batch_size (int, optional): Size of batches. Defaults to None.
|
|
||||||
stride (int, optional): Stride. Defaults to 32.
|
|
||||||
pad (float, optional): Padding. Defaults to 0.0.
|
|
||||||
single_cls (bool, optional): If True, single class training is used. Defaults to False.
|
|
||||||
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
|
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
|
||||||
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
|
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
|
||||||
data (dict, optional): A dataset YAML dictionary. Defaults to None.
|
|
||||||
classes (list): List of included classes. Default is None.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
|
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
|
||||||
@ -43,28 +31,12 @@ class YOLODataset(BaseDataset):
|
|||||||
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
|
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
|
||||||
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
|
||||||
img_path,
|
|
||||||
imgsz=640,
|
|
||||||
cache=False,
|
|
||||||
augment=True,
|
|
||||||
hyp=None,
|
|
||||||
prefix='',
|
|
||||||
rect=False,
|
|
||||||
batch_size=None,
|
|
||||||
stride=32,
|
|
||||||
pad=0.0,
|
|
||||||
single_cls=False,
|
|
||||||
use_segments=False,
|
|
||||||
use_keypoints=False,
|
|
||||||
data=None,
|
|
||||||
classes=None):
|
|
||||||
self.use_segments = use_segments
|
self.use_segments = use_segments
|
||||||
self.use_keypoints = use_keypoints
|
self.use_keypoints = use_keypoints
|
||||||
self.data = data
|
self.data = data
|
||||||
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
|
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
|
||||||
super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls,
|
super().__init__(*args, **kwargs)
|
||||||
classes)
|
|
||||||
|
|
||||||
def cache_labels(self, path=Path('./labels.cache')):
|
def cache_labels(self, path=Path('./labels.cache')):
|
||||||
"""Cache dataset labels, check images and read shapes.
|
"""Cache dataset labels, check images and read shapes.
|
||||||
|
@ -453,7 +453,7 @@ class YOLO:
|
|||||||
reduction_factor=3)
|
reduction_factor=3)
|
||||||
|
|
||||||
# Define the callbacks for the hyperparameter search
|
# Define the callbacks for the hyperparameter search
|
||||||
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune') if wandb else None]
|
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune')] if wandb else []
|
||||||
|
|
||||||
# Create the Ray Tune hyperparameter search tuner
|
# Create the Ray Tune hyperparameter search tuner
|
||||||
tuner = tune.Tuner(trainable_with_resources,
|
tuner = tune.Tuner(trainable_with_resources,
|
||||||
|
@ -31,11 +31,13 @@ import platform
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
from ultralytics.nn.autobackend import AutoBackend
|
from ultralytics.nn.autobackend import AutoBackend
|
||||||
from ultralytics.yolo.cfg import get_cfg
|
from ultralytics.yolo.cfg import get_cfg
|
||||||
from ultralytics.yolo.data import load_inference_source
|
from ultralytics.yolo.data import load_inference_source
|
||||||
from ultralytics.yolo.data.augment import classify_transforms
|
from ultralytics.yolo.data.augment import LetterBox, classify_transforms
|
||||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
|
||||||
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
|
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
|
||||||
from ultralytics.yolo.utils.files import increment_path
|
from ultralytics.yolo.utils.files import increment_path
|
||||||
@ -106,9 +108,23 @@ class BasePredictor:
|
|||||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||||
callbacks.add_integration_callbacks(self)
|
callbacks.add_integration_callbacks(self)
|
||||||
|
|
||||||
def preprocess(self, img):
|
def preprocess(self, im):
|
||||||
"""Prepares input image before inference."""
|
"""Prepares input image before inference.
|
||||||
pass
|
|
||||||
|
Args:
|
||||||
|
im (torch.Tensor | List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
||||||
|
"""
|
||||||
|
if not isinstance(im, torch.Tensor):
|
||||||
|
auto = all(x.shape == im[0].shape for x in im) and self.model.pt
|
||||||
|
im = np.stack([LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im])
|
||||||
|
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
||||||
|
im = np.ascontiguousarray(im) # contiguous
|
||||||
|
im = torch.from_numpy(im)
|
||||||
|
# NOTE: assuming im with (b, 3, h, w) if it's a tensor
|
||||||
|
img = im.to(self.device)
|
||||||
|
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||||
|
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||||
|
return img
|
||||||
|
|
||||||
def write_results(self, idx, results, batch):
|
def write_results(self, idx, results, batch):
|
||||||
"""Write inference results to a file or directory."""
|
"""Write inference results to a file or directory."""
|
||||||
@ -165,16 +181,9 @@ class BasePredictor:
|
|||||||
def setup_source(self, source):
|
def setup_source(self, source):
|
||||||
"""Sets up source and inference mode."""
|
"""Sets up source and inference mode."""
|
||||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||||
if self.args.task == 'classify':
|
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
|
||||||
transforms = getattr(self.model.model, 'transforms', classify_transforms(self.imgsz[0]))
|
self.imgsz[0])) if self.args.task == 'classify' else None
|
||||||
else: # predict, segment
|
self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride)
|
||||||
transforms = None
|
|
||||||
self.dataset = load_inference_source(source=source,
|
|
||||||
transforms=transforms,
|
|
||||||
imgsz=self.imgsz,
|
|
||||||
vid_stride=self.args.vid_stride,
|
|
||||||
stride=self.model.stride,
|
|
||||||
auto=self.model.pt)
|
|
||||||
self.source_type = self.dataset.source_type
|
self.source_type = self.dataset.source_type
|
||||||
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
||||||
len(self.dataset) > 1000 or # images
|
len(self.dataset) > 1000 or # images
|
||||||
@ -207,14 +216,12 @@ class BasePredictor:
|
|||||||
for batch in self.dataset:
|
for batch in self.dataset:
|
||||||
self.run_callbacks('on_predict_batch_start')
|
self.run_callbacks('on_predict_batch_start')
|
||||||
self.batch = batch
|
self.batch = batch
|
||||||
path, im, im0s, vid_cap, s = batch
|
path, im0s, vid_cap, s = batch
|
||||||
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
|
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
|
||||||
|
|
||||||
# Preprocess
|
# Preprocess
|
||||||
with self.dt[0]:
|
with self.dt[0]:
|
||||||
im = self.preprocess(im)
|
im = self.preprocess(im0s)
|
||||||
if len(im.shape) == 3:
|
|
||||||
im = im[None] # expand for batch dim
|
|
||||||
|
|
||||||
# Inference
|
# Inference
|
||||||
with self.dt[1]:
|
with self.dt[1]:
|
||||||
@ -226,7 +233,7 @@ class BasePredictor:
|
|||||||
self.run_callbacks('on_predict_postprocess_end')
|
self.run_callbacks('on_predict_postprocess_end')
|
||||||
|
|
||||||
# Visualize, save, write results
|
# Visualize, save, write results
|
||||||
n = len(im)
|
n = len(im0s)
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
self.results[i].speed = {
|
self.results[i].speed = {
|
||||||
'preprocess': self.dt[0].dt * 1E3 / n,
|
'preprocess': self.dt[0].dt * 1E3 / n,
|
||||||
@ -234,8 +241,7 @@ class BasePredictor:
|
|||||||
'postprocess': self.dt[2].dt * 1E3 / n}
|
'postprocess': self.dt[2].dt * 1E3 / n}
|
||||||
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
|
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
|
||||||
continue
|
continue
|
||||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
|
p, im0 = path[i], im0s[i].copy()
|
||||||
else (path, im0s.copy())
|
|
||||||
p = Path(p)
|
p = Path(p)
|
||||||
|
|
||||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||||
|
@ -213,7 +213,8 @@ class Results(SimpleClass):
|
|||||||
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
||||||
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
||||||
2, 0, 1).flip(0).contiguous() / 255
|
2, 0, 1).flip(0).contiguous() / 255
|
||||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu)
|
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
||||||
|
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=img_gpu)
|
||||||
|
|
||||||
if pred_boxes and show_boxes:
|
if pred_boxes and show_boxes:
|
||||||
for d in reversed(pred_boxes):
|
for d in reversed(pred_boxes):
|
||||||
|
@ -481,6 +481,10 @@ class BaseTrainer:
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError('get_dataloader function not implemented in trainer')
|
raise NotImplementedError('get_dataloader function not implemented in trainer')
|
||||||
|
|
||||||
|
def build_dataset(self, img_path, mode='train', batch=None):
|
||||||
|
"""Build dataset"""
|
||||||
|
raise NotImplementedError('build_dataset function not implemented in trainer')
|
||||||
|
|
||||||
def criterion(self, preds, batch):
|
def criterion(self, preds, batch):
|
||||||
"""
|
"""
|
||||||
Returns loss and individual loss items as Tensor.
|
Returns loss and individual loss items as Tensor.
|
||||||
|
@ -207,6 +207,10 @@ class BaseValidator:
|
|||||||
"""Get data loader from dataset path and batch size."""
|
"""Get data loader from dataset path and batch size."""
|
||||||
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
||||||
|
|
||||||
|
def build_dataset(self, img_path):
|
||||||
|
"""Build dataset"""
|
||||||
|
raise NotImplementedError('build_dataset function not implemented in validator')
|
||||||
|
|
||||||
def preprocess(self, batch):
|
def preprocess(self, batch):
|
||||||
"""Preprocesses an input batch."""
|
"""Preprocesses an input batch."""
|
||||||
return batch
|
return batch
|
||||||
|
@ -13,20 +13,8 @@ try:
|
|||||||
except (ImportError, AssertionError):
|
except (ImportError, AssertionError):
|
||||||
comet_ml = None
|
comet_ml = None
|
||||||
|
|
||||||
COMET_MODE = os.getenv('COMET_MODE', 'online')
|
|
||||||
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'YOLOv8')
|
|
||||||
# Determines how many batches of image predictions to log from the validation set
|
|
||||||
COMET_EVAL_BATCH_LOGGING_INTERVAL = int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1))
|
|
||||||
# Determines whether to log confusion matrix every evaluation epoch
|
|
||||||
COMET_EVAL_LOG_CONFUSION_MATRIX = (os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'true').lower() == 'true')
|
|
||||||
# Determines whether to log image predictions every evaluation epoch
|
|
||||||
COMET_EVAL_LOG_IMAGE_PREDICTIONS = (os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true')
|
|
||||||
COMET_MAX_IMAGE_PREDICTIONS = int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100))
|
|
||||||
|
|
||||||
# Ensures certain logging functions only run for supported tasks
|
# Ensures certain logging functions only run for supported tasks
|
||||||
COMET_SUPPORTED_TASKS = ['detect']
|
COMET_SUPPORTED_TASKS = ['detect']
|
||||||
# Scales reported confidence scores (0.0-1.0) by this value
|
|
||||||
COMET_MAX_CONFIDENCE_SCORE = int(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100))
|
|
||||||
|
|
||||||
# Names of plots created by YOLOv8 that are logged to Comet
|
# Names of plots created by YOLOv8 that are logged to Comet
|
||||||
EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix'
|
EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix'
|
||||||
@ -35,6 +23,35 @@ LABEL_PLOT_NAMES = 'labels', 'labels_correlogram'
|
|||||||
_comet_image_prediction_count = 0
|
_comet_image_prediction_count = 0
|
||||||
|
|
||||||
|
|
||||||
|
def _get_comet_mode():
|
||||||
|
return os.getenv('COMET_MODE', 'online')
|
||||||
|
|
||||||
|
|
||||||
|
def _get_comet_model_name():
|
||||||
|
return os.getenv('COMET_MODEL_NAME', 'YOLOv8')
|
||||||
|
|
||||||
|
|
||||||
|
def _get_eval_batch_logging_interval():
|
||||||
|
return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1))
|
||||||
|
|
||||||
|
|
||||||
|
def _get_max_image_predictions_to_log():
|
||||||
|
return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100))
|
||||||
|
|
||||||
|
|
||||||
|
def _scale_confidence_score(score):
|
||||||
|
scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0))
|
||||||
|
return score * scale
|
||||||
|
|
||||||
|
|
||||||
|
def _should_log_confusion_matrix():
|
||||||
|
return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'true').lower() == 'true'
|
||||||
|
|
||||||
|
|
||||||
|
def _should_log_image_predictions():
|
||||||
|
return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true'
|
||||||
|
|
||||||
|
|
||||||
def _get_experiment_type(mode, project_name):
|
def _get_experiment_type(mode, project_name):
|
||||||
"""Return an experiment based on mode and project name."""
|
"""Return an experiment based on mode and project name."""
|
||||||
if mode == 'offline':
|
if mode == 'offline':
|
||||||
@ -48,13 +65,14 @@ def _create_experiment(args):
|
|||||||
if RANK not in (-1, 0):
|
if RANK not in (-1, 0):
|
||||||
return
|
return
|
||||||
try:
|
try:
|
||||||
experiment = _get_experiment_type(COMET_MODE, args.project)
|
comet_mode = _get_comet_mode()
|
||||||
|
experiment = _get_experiment_type(comet_mode, args.project)
|
||||||
experiment.log_parameters(vars(args))
|
experiment.log_parameters(vars(args))
|
||||||
experiment.log_others({
|
experiment.log_others({
|
||||||
'eval_batch_logging_interval': COMET_EVAL_BATCH_LOGGING_INTERVAL,
|
'eval_batch_logging_interval': _get_eval_batch_logging_interval(),
|
||||||
'log_confusion_matrix': COMET_EVAL_LOG_CONFUSION_MATRIX,
|
'log_confusion_matrix': _should_log_confusion_matrix(),
|
||||||
'log_image_predictions': COMET_EVAL_LOG_IMAGE_PREDICTIONS,
|
'log_image_predictions': _should_log_image_predictions(),
|
||||||
'max_image_predictions': COMET_MAX_IMAGE_PREDICTIONS, })
|
'max_image_predictions': _get_max_image_predictions_to_log(), })
|
||||||
experiment.log_other('Created from', 'yolov8')
|
experiment.log_other('Created from', 'yolov8')
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -74,7 +92,12 @@ def _fetch_trainer_metadata(trainer):
|
|||||||
save_interval = curr_epoch % save_period == 0
|
save_interval = curr_epoch % save_period == 0
|
||||||
save_assets = save and save_period > 0 and save_interval and not final_epoch
|
save_assets = save and save_period > 0 and save_interval and not final_epoch
|
||||||
|
|
||||||
return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)
|
return dict(
|
||||||
|
curr_epoch=curr_epoch,
|
||||||
|
curr_step=curr_step,
|
||||||
|
save_assets=save_assets,
|
||||||
|
final_epoch=final_epoch,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
|
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
|
||||||
@ -117,7 +140,10 @@ def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, c
|
|||||||
data = []
|
data = []
|
||||||
for box, label in zip(bboxes, cls_labels):
|
for box, label in zip(bboxes, cls_labels):
|
||||||
box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
|
box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
|
||||||
data.append({'boxes': [box], 'label': f'gt_{label}', 'score': COMET_MAX_CONFIDENCE_SCORE})
|
data.append({
|
||||||
|
'boxes': [box],
|
||||||
|
'label': f'gt_{label}',
|
||||||
|
'score': _scale_confidence_score(1.0), })
|
||||||
|
|
||||||
return {'name': 'ground_truth', 'data': data}
|
return {'name': 'ground_truth', 'data': data}
|
||||||
|
|
||||||
@ -135,7 +161,7 @@ def _format_prediction_annotations_for_detection(image_path, metadata, class_lab
|
|||||||
data = []
|
data = []
|
||||||
for prediction in predictions:
|
for prediction in predictions:
|
||||||
boxes = prediction['bbox']
|
boxes = prediction['bbox']
|
||||||
score = prediction['score'] * COMET_MAX_CONFIDENCE_SCORE
|
score = _scale_confidence_score(prediction['score'])
|
||||||
cls_label = prediction['category_id']
|
cls_label = prediction['category_id']
|
||||||
if class_label_map:
|
if class_label_map:
|
||||||
cls_label = str(class_label_map[cls_label])
|
cls_label = str(class_label_map[cls_label])
|
||||||
@ -207,13 +233,16 @@ def _log_image_predictions(experiment, validator, curr_step):
|
|||||||
dataloader = validator.dataloader
|
dataloader = validator.dataloader
|
||||||
class_label_map = validator.names
|
class_label_map = validator.names
|
||||||
|
|
||||||
|
batch_logging_interval = _get_eval_batch_logging_interval()
|
||||||
|
max_image_predictions = _get_max_image_predictions_to_log()
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(dataloader):
|
for batch_idx, batch in enumerate(dataloader):
|
||||||
if (batch_idx + 1) % COMET_EVAL_BATCH_LOGGING_INTERVAL != 0:
|
if (batch_idx + 1) % batch_logging_interval != 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
image_paths = batch['im_file']
|
image_paths = batch['im_file']
|
||||||
for img_idx, image_path in enumerate(image_paths):
|
for img_idx, image_path in enumerate(image_paths):
|
||||||
if _comet_image_prediction_count >= COMET_MAX_IMAGE_PREDICTIONS:
|
if _comet_image_prediction_count >= max_image_predictions:
|
||||||
return
|
return
|
||||||
|
|
||||||
image_path = Path(image_path)
|
image_path = Path(image_path)
|
||||||
@ -244,8 +273,9 @@ def _log_plots(experiment, trainer):
|
|||||||
|
|
||||||
def _log_model(experiment, trainer):
|
def _log_model(experiment, trainer):
|
||||||
"""Log the best-trained model to Comet.ml."""
|
"""Log the best-trained model to Comet.ml."""
|
||||||
|
model_name = _get_comet_model_name()
|
||||||
experiment.log_model(
|
experiment.log_model(
|
||||||
COMET_MODEL_NAME,
|
model_name,
|
||||||
file_or_folder=str(trainer.best),
|
file_or_folder=str(trainer.best),
|
||||||
file_name='best.pt',
|
file_name='best.pt',
|
||||||
overwrite=True,
|
overwrite=True,
|
||||||
@ -255,7 +285,8 @@ def _log_model(experiment, trainer):
|
|||||||
def on_pretrain_routine_start(trainer):
|
def on_pretrain_routine_start(trainer):
|
||||||
"""Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
|
"""Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
|
||||||
experiment = comet_ml.get_global_experiment()
|
experiment = comet_ml.get_global_experiment()
|
||||||
if not experiment:
|
is_alive = getattr(experiment, 'alive', False)
|
||||||
|
if not experiment or not is_alive:
|
||||||
_create_experiment(trainer.args)
|
_create_experiment(trainer.args)
|
||||||
|
|
||||||
|
|
||||||
@ -296,16 +327,16 @@ def on_fit_epoch_end(trainer):
|
|||||||
model_info = {
|
model_info = {
|
||||||
'model/parameters': get_num_params(trainer.model),
|
'model/parameters': get_num_params(trainer.model),
|
||||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
|
||||||
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
|
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
|
||||||
|
|
||||||
if not save_assets:
|
if not save_assets:
|
||||||
return
|
return
|
||||||
|
|
||||||
_log_model(experiment, trainer)
|
_log_model(experiment, trainer)
|
||||||
if COMET_EVAL_LOG_CONFUSION_MATRIX:
|
if _should_log_confusion_matrix():
|
||||||
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
|
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
|
||||||
if COMET_EVAL_LOG_IMAGE_PREDICTIONS:
|
if _should_log_image_predictions():
|
||||||
_log_image_predictions(experiment, trainer.validator, curr_step)
|
_log_image_predictions(experiment, trainer.validator, curr_step)
|
||||||
|
|
||||||
|
|
||||||
|
@ -17,7 +17,8 @@ from ultralytics.yolo.utils import LOGGER, checks, clean_url, emojis, is_online,
|
|||||||
|
|
||||||
GITHUB_ASSET_NAMES = [f'yolov8{k}{suffix}.pt' for k in 'nsmlx' for suffix in ('', '6', '-cls', '-seg', '-pose')] + \
|
GITHUB_ASSET_NAMES = [f'yolov8{k}{suffix}.pt' for k in 'nsmlx' for suffix in ('', '6', '-cls', '-seg', '-pose')] + \
|
||||||
[f'yolov5{k}u.pt' for k in 'nsmlx'] + \
|
[f'yolov5{k}u.pt' for k in 'nsmlx'] + \
|
||||||
[f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')]
|
[f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')] + \
|
||||||
|
[f'sam_{k}.pt' for k in 'bl']
|
||||||
GITHUB_ASSET_STEMS = [Path(k).stem for k in GITHUB_ASSET_NAMES]
|
GITHUB_ASSET_STEMS = [Path(k).stem for k in GITHUB_ASSET_NAMES]
|
||||||
|
|
||||||
|
|
||||||
|
@ -192,14 +192,27 @@ class Annotator:
|
|||||||
"""Add rectangle to image (PIL-only)."""
|
"""Add rectangle to image (PIL-only)."""
|
||||||
self.draw.rectangle(xy, fill, outline, width)
|
self.draw.rectangle(xy, fill, outline, width)
|
||||||
|
|
||||||
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
|
||||||
"""Adds text to an image using PIL or cv2."""
|
"""Adds text to an image using PIL or cv2."""
|
||||||
if anchor == 'bottom': # start y from font bottom
|
if anchor == 'bottom': # start y from font bottom
|
||||||
w, h = self.font.getsize(text) # text width, height
|
w, h = self.font.getsize(text) # text width, height
|
||||||
xy[1] += 1 - h
|
xy[1] += 1 - h
|
||||||
if self.pil:
|
if self.pil:
|
||||||
|
if box_style:
|
||||||
|
w, h = self.font.getsize(text)
|
||||||
|
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
|
||||||
|
# Using `txt_color` for background and draw fg with white color
|
||||||
|
txt_color = (255, 255, 255)
|
||||||
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||||
else:
|
else:
|
||||||
|
if box_style:
|
||||||
|
tf = max(self.lw - 1, 1) # font thickness
|
||||||
|
w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
||||||
|
outside = xy[1] - h >= 3
|
||||||
|
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
|
||||||
|
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
|
||||||
|
# Using `txt_color` for background and draw fg with white color
|
||||||
|
txt_color = (255, 255, 255)
|
||||||
tf = max(self.lw - 1, 1) # font thickness
|
tf = max(self.lw - 1, 1) # font thickness
|
||||||
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
|
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
@ -283,7 +296,7 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
|
|||||||
def plot_images(images,
|
def plot_images(images,
|
||||||
batch_idx,
|
batch_idx,
|
||||||
cls,
|
cls,
|
||||||
bboxes,
|
bboxes=np.zeros(0, dtype=np.float32),
|
||||||
masks=np.zeros(0, dtype=np.uint8),
|
masks=np.zeros(0, dtype=np.uint8),
|
||||||
kpts=np.zeros((0, 51), dtype=np.float32),
|
kpts=np.zeros((0, 51), dtype=np.float32),
|
||||||
paths=None,
|
paths=None,
|
||||||
@ -337,27 +350,33 @@ def plot_images(images,
|
|||||||
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||||
if len(cls) > 0:
|
if len(cls) > 0:
|
||||||
idx = batch_idx == i
|
idx = batch_idx == i
|
||||||
|
|
||||||
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
|
||||||
classes = cls[idx].astype('int')
|
classes = cls[idx].astype('int')
|
||||||
labels = bboxes.shape[1] == 4 # labels if no conf column
|
|
||||||
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
|
||||||
|
|
||||||
if boxes.shape[1]:
|
if len(bboxes):
|
||||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
||||||
boxes[[0, 2]] *= w # scale to pixels
|
labels = bboxes.shape[1] == 4 # labels if no conf column
|
||||||
boxes[[1, 3]] *= h
|
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
||||||
elif scale < 1: # absolute coords need scale if image scales
|
|
||||||
boxes *= scale
|
if boxes.shape[1]:
|
||||||
boxes[[0, 2]] += x
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
boxes[[1, 3]] += y
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
for j, box in enumerate(boxes.T.tolist()):
|
boxes[[1, 3]] *= h
|
||||||
c = classes[j]
|
elif scale < 1: # absolute coords need scale if image scales
|
||||||
color = colors(c)
|
boxes *= scale
|
||||||
c = names.get(c, c) if names else c
|
boxes[[0, 2]] += x
|
||||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
boxes[[1, 3]] += y
|
||||||
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
for j, box in enumerate(boxes.T.tolist()):
|
||||||
annotator.box_label(box, label, color=color)
|
c = classes[j]
|
||||||
|
color = colors(c)
|
||||||
|
c = names.get(c, c) if names else c
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||||||
|
annotator.box_label(box, label, color=color)
|
||||||
|
elif len(classes):
|
||||||
|
for c in classes:
|
||||||
|
color = colors(c)
|
||||||
|
c = names.get(c, c) if names else c
|
||||||
|
annotator.text((x, y), f'{c}', txt_color=color, box_style=True)
|
||||||
|
|
||||||
# Plot keypoints
|
# Plot keypoints
|
||||||
if len(kpts):
|
if len(kpts):
|
||||||
@ -403,11 +422,14 @@ def plot_images(images,
|
|||||||
|
|
||||||
|
|
||||||
@plt_settings()
|
@plt_settings()
|
||||||
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False):
|
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False):
|
||||||
"""Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')."""
|
"""Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')."""
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
save_dir = Path(file).parent if file else Path(dir)
|
save_dir = Path(file).parent if file else Path(dir)
|
||||||
if segment:
|
if classify:
|
||||||
|
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
|
||||||
|
index = [1, 4, 2, 3]
|
||||||
|
elif segment:
|
||||||
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||||||
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
||||||
elif pose:
|
elif pose:
|
||||||
|
@ -225,7 +225,7 @@ class TaskAlignedAssigner(nn.Module):
|
|||||||
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
|
||||||
|
|
||||||
# Assigned target scores
|
# Assigned target scores
|
||||||
target_labels.clamp(0)
|
target_labels.clamp_(0)
|
||||||
target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
|
target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
|
||||||
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
|
||||||
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
|
||||||
|
@ -9,8 +9,14 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
|
|||||||
|
|
||||||
class ClassificationPredictor(BasePredictor):
|
class ClassificationPredictor(BasePredictor):
|
||||||
|
|
||||||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||||
|
super().__init__(cfg, overrides, _callbacks)
|
||||||
|
self.args.task = 'classify'
|
||||||
|
|
||||||
def preprocess(self, img):
|
def preprocess(self, img):
|
||||||
"""Converts input image to model-compatible data type."""
|
"""Converts input image to model-compatible data type."""
|
||||||
|
if not isinstance(img, torch.Tensor):
|
||||||
|
img = torch.stack([self.transforms(im) for im in img], dim=0)
|
||||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||||
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||||
|
|
||||||
@ -19,7 +25,7 @@ class ClassificationPredictor(BasePredictor):
|
|||||||
results = []
|
results = []
|
||||||
for i, pred in enumerate(preds):
|
for i, pred in enumerate(preds):
|
||||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||||
path, _, _, _, _ = self.batch
|
path = self.batch[0]
|
||||||
img_path = path[i] if isinstance(path, list) else path
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
|
||||||
|
|
||||||
|
@ -5,10 +5,11 @@ import torchvision
|
|||||||
|
|
||||||
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
||||||
from ultralytics.yolo import v8
|
from ultralytics.yolo import v8
|
||||||
from ultralytics.yolo.data import build_classification_dataloader
|
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
|
||||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
||||||
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
|
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||||
|
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
|
||||||
|
|
||||||
|
|
||||||
class ClassificationTrainer(BaseTrainer):
|
class ClassificationTrainer(BaseTrainer):
|
||||||
@ -71,14 +72,16 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
|
|
||||||
return # dont return ckpt. Classification doesn't support resume
|
return # dont return ckpt. Classification doesn't support resume
|
||||||
|
|
||||||
|
def build_dataset(self, img_path, mode='train'):
|
||||||
|
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=mode == 'train')
|
||||||
|
return dataset
|
||||||
|
|
||||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||||
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
|
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
|
||||||
loader = build_classification_dataloader(path=dataset_path,
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||||
imgsz=self.args.imgsz,
|
dataset = self.build_dataset(dataset_path, mode)
|
||||||
batch_size=batch_size if mode == 'train' else (batch_size * 2),
|
|
||||||
augment=mode == 'train',
|
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
|
||||||
rank=rank,
|
|
||||||
workers=self.args.workers)
|
|
||||||
# Attach inference transforms
|
# Attach inference transforms
|
||||||
if mode != 'train':
|
if mode != 'train':
|
||||||
if is_parallel(self.model):
|
if is_parallel(self.model):
|
||||||
@ -124,6 +127,10 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
"""Resumes training from a given checkpoint."""
|
"""Resumes training from a given checkpoint."""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def plot_metrics(self):
|
||||||
|
"""Plots metrics from a CSV file."""
|
||||||
|
plot_results(file=self.csv, classify=True) # save results.png
|
||||||
|
|
||||||
def final_eval(self):
|
def final_eval(self):
|
||||||
"""Evaluate trained model and save validation results."""
|
"""Evaluate trained model and save validation results."""
|
||||||
for f in self.last, self.best:
|
for f in self.last, self.best:
|
||||||
@ -138,6 +145,13 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
# self.run_callbacks('on_fit_epoch_end')
|
# self.run_callbacks('on_fit_epoch_end')
|
||||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||||
|
|
||||||
|
def plot_training_samples(self, batch, ni):
|
||||||
|
"""Plots training samples with their annotations."""
|
||||||
|
plot_images(images=batch['img'],
|
||||||
|
batch_idx=torch.arange(len(batch['img'])),
|
||||||
|
cls=batch['cls'].squeeze(-1),
|
||||||
|
fname=self.save_dir / f'train_batch{ni}.jpg')
|
||||||
|
|
||||||
|
|
||||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||||
"""Train the YOLO classification model."""
|
"""Train the YOLO classification model."""
|
||||||
|
@ -1,9 +1,12 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
from ultralytics.yolo.data import build_classification_dataloader
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
|
||||||
from ultralytics.yolo.engine.validator import BaseValidator
|
from ultralytics.yolo.engine.validator import BaseValidator
|
||||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
|
||||||
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix
|
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix
|
||||||
|
from ultralytics.yolo.utils.plotting import plot_images
|
||||||
|
|
||||||
|
|
||||||
class ClassificationValidator(BaseValidator):
|
class ClassificationValidator(BaseValidator):
|
||||||
@ -52,20 +55,36 @@ class ClassificationValidator(BaseValidator):
|
|||||||
self.metrics.process(self.targets, self.pred)
|
self.metrics.process(self.targets, self.pred)
|
||||||
return self.metrics.results_dict
|
return self.metrics.results_dict
|
||||||
|
|
||||||
|
def build_dataset(self, img_path):
|
||||||
|
dataset = ClassificationDataset(root=img_path, imgsz=self.args.imgsz, augment=False)
|
||||||
|
return dataset
|
||||||
|
|
||||||
def get_dataloader(self, dataset_path, batch_size):
|
def get_dataloader(self, dataset_path, batch_size):
|
||||||
"""Builds and returns a data loader for classification tasks with given parameters."""
|
"""Builds and returns a data loader for classification tasks with given parameters."""
|
||||||
return build_classification_dataloader(path=dataset_path,
|
dataset = self.build_dataset(dataset_path)
|
||||||
imgsz=self.args.imgsz,
|
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
|
||||||
batch_size=batch_size,
|
|
||||||
augment=False,
|
|
||||||
shuffle=False,
|
|
||||||
workers=self.args.workers)
|
|
||||||
|
|
||||||
def print_results(self):
|
def print_results(self):
|
||||||
"""Prints evaluation metrics for YOLO object detection model."""
|
"""Prints evaluation metrics for YOLO object detection model."""
|
||||||
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
|
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
|
||||||
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
|
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
|
||||||
|
|
||||||
|
def plot_val_samples(self, batch, ni):
|
||||||
|
"""Plot validation image samples."""
|
||||||
|
plot_images(images=batch['img'],
|
||||||
|
batch_idx=torch.arange(len(batch['img'])),
|
||||||
|
cls=batch['cls'].squeeze(-1),
|
||||||
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||||
|
names=self.names)
|
||||||
|
|
||||||
|
def plot_predictions(self, batch, preds, ni):
|
||||||
|
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||||
|
plot_images(batch['img'],
|
||||||
|
batch_idx=torch.arange(len(batch['img'])),
|
||||||
|
cls=torch.argmax(preds, dim=1),
|
||||||
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||||
|
names=self.names) # pred
|
||||||
|
|
||||||
|
|
||||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||||
"""Validate YOLO model using custom data."""
|
"""Validate YOLO model using custom data."""
|
||||||
|
@ -9,13 +9,6 @@ from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
|
|||||||
|
|
||||||
class DetectionPredictor(BasePredictor):
|
class DetectionPredictor(BasePredictor):
|
||||||
|
|
||||||
def preprocess(self, img):
|
|
||||||
"""Convert an image to PyTorch tensor and normalize pixel values."""
|
|
||||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
|
||||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
|
||||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
|
||||||
return img
|
|
||||||
|
|
||||||
def postprocess(self, preds, img, orig_imgs):
|
def postprocess(self, preds, img, orig_imgs):
|
||||||
"""Postprocesses predictions and returns a list of Results objects."""
|
"""Postprocesses predictions and returns a list of Results objects."""
|
||||||
preds = ops.non_max_suppression(preds,
|
preds = ops.non_max_suppression(preds,
|
||||||
@ -30,7 +23,7 @@ class DetectionPredictor(BasePredictor):
|
|||||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||||
if not isinstance(orig_imgs, torch.Tensor):
|
if not isinstance(orig_imgs, torch.Tensor):
|
||||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||||
path, _, _, _, _ = self.batch
|
path = self.batch[0]
|
||||||
img_path = path[i] if isinstance(path, list) else path
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||||
return results
|
return results
|
||||||
|
@ -7,41 +7,63 @@ import torch.nn as nn
|
|||||||
|
|
||||||
from ultralytics.nn.tasks import DetectionModel
|
from ultralytics.nn.tasks import DetectionModel
|
||||||
from ultralytics.yolo import v8
|
from ultralytics.yolo import v8
|
||||||
from ultralytics.yolo.data import build_dataloader
|
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
|
||||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
|
||||||
from ultralytics.yolo.utils.loss import BboxLoss
|
from ultralytics.yolo.utils.loss import BboxLoss
|
||||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||||
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results
|
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results
|
||||||
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
||||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first
|
||||||
|
|
||||||
|
|
||||||
# BaseTrainer python usage
|
# BaseTrainer python usage
|
||||||
class DetectionTrainer(BaseTrainer):
|
class DetectionTrainer(BaseTrainer):
|
||||||
|
|
||||||
|
def build_dataset(self, img_path, mode='train', batch=None):
|
||||||
|
"""Build YOLO Dataset
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img_path (str): Path to the folder containing images.
|
||||||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||||
|
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||||
|
"""
|
||||||
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||||
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
|
||||||
|
|
||||||
def get_dataloader(self, dataset_path, batch_size, rank=0, mode='train'):
|
def get_dataloader(self, dataset_path, batch_size, rank=0, mode='train'):
|
||||||
"""TODO: manage splits differently."""
|
"""TODO: manage splits differently."""
|
||||||
# Calculate stride - check if model is initialized
|
# Calculate stride - check if model is initialized
|
||||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
if self.args.v5loader:
|
||||||
return create_dataloader(path=dataset_path,
|
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
|
||||||
imgsz=self.args.imgsz,
|
'the default YOLOv8 dataloader instead, no argument is needed.')
|
||||||
batch_size=batch_size,
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||||
stride=gs,
|
return create_dataloader(path=dataset_path,
|
||||||
hyp=vars(self.args),
|
imgsz=self.args.imgsz,
|
||||||
augment=mode == 'train',
|
batch_size=batch_size,
|
||||||
cache=self.args.cache,
|
stride=gs,
|
||||||
pad=0 if mode == 'train' else 0.5,
|
hyp=vars(self.args),
|
||||||
rect=self.args.rect or mode == 'val',
|
augment=mode == 'train',
|
||||||
rank=rank,
|
cache=self.args.cache,
|
||||||
workers=self.args.workers,
|
pad=0 if mode == 'train' else 0.5,
|
||||||
close_mosaic=self.args.close_mosaic != 0,
|
rect=self.args.rect or mode == 'val',
|
||||||
prefix=colorstr(f'{mode}: '),
|
rank=rank,
|
||||||
shuffle=mode == 'train',
|
workers=self.args.workers,
|
||||||
seed=self.args.seed)[0] if self.args.v5loader else \
|
close_mosaic=self.args.close_mosaic != 0,
|
||||||
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode,
|
prefix=colorstr(f'{mode}: '),
|
||||||
rect=mode == 'val', data_info=self.data)[0]
|
shuffle=mode == 'train',
|
||||||
|
seed=self.args.seed)[0]
|
||||||
|
assert mode in ['train', 'val']
|
||||||
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||||
|
dataset = self.build_dataset(dataset_path, mode, batch_size)
|
||||||
|
shuffle = mode == 'train'
|
||||||
|
if getattr(dataset, 'rect', False) and shuffle:
|
||||||
|
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
||||||
|
shuffle = False
|
||||||
|
workers = self.args.workers if mode == 'train' else self.args.workers * 2
|
||||||
|
dataloader = build_dataloader(dataset, batch_size, workers, shuffle, rank)
|
||||||
|
return dataloader
|
||||||
|
|
||||||
def preprocess_batch(self, batch):
|
def preprocess_batch(self, batch):
|
||||||
"""Preprocesses a batch of images by scaling and converting to float."""
|
"""Preprocesses a batch of images by scaling and converting to float."""
|
||||||
|
@ -6,7 +6,7 @@ from pathlib import Path
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ultralytics.yolo.data import build_dataloader
|
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
|
||||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||||
from ultralytics.yolo.engine.validator import BaseValidator
|
from ultralytics.yolo.engine.validator import BaseValidator
|
||||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
|
||||||
@ -171,24 +171,40 @@ class DetectionValidator(BaseValidator):
|
|||||||
correct[matches[:, 1].astype(int), i] = True
|
correct[matches[:, 1].astype(int), i] = True
|
||||||
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
||||||
|
|
||||||
|
def build_dataset(self, img_path, mode='val', batch=None):
|
||||||
|
"""Build YOLO Dataset
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img_path (str): Path to the folder containing images.
|
||||||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||||
|
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||||
|
"""
|
||||||
|
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||||
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
|
||||||
|
|
||||||
def get_dataloader(self, dataset_path, batch_size):
|
def get_dataloader(self, dataset_path, batch_size):
|
||||||
"""TODO: manage splits differently."""
|
"""TODO: manage splits differently."""
|
||||||
# Calculate stride - check if model is initialized
|
# Calculate stride - check if model is initialized
|
||||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
if self.args.v5loader:
|
||||||
return create_dataloader(path=dataset_path,
|
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
|
||||||
imgsz=self.args.imgsz,
|
'the default YOLOv8 dataloader instead, no argument is needed.')
|
||||||
batch_size=batch_size,
|
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||||
stride=gs,
|
return create_dataloader(path=dataset_path,
|
||||||
hyp=vars(self.args),
|
imgsz=self.args.imgsz,
|
||||||
cache=False,
|
batch_size=batch_size,
|
||||||
pad=0.5,
|
stride=gs,
|
||||||
rect=self.args.rect,
|
hyp=vars(self.args),
|
||||||
workers=self.args.workers,
|
cache=False,
|
||||||
prefix=colorstr(f'{self.args.mode}: '),
|
pad=0.5,
|
||||||
shuffle=False,
|
rect=self.args.rect,
|
||||||
seed=self.args.seed)[0] if self.args.v5loader else \
|
workers=self.args.workers,
|
||||||
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, data_info=self.data,
|
prefix=colorstr(f'{self.args.mode}: '),
|
||||||
mode='val')[0]
|
shuffle=False,
|
||||||
|
seed=self.args.seed)[0]
|
||||||
|
|
||||||
|
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
|
||||||
|
dataloader = build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1)
|
||||||
|
return dataloader
|
||||||
|
|
||||||
def plot_val_samples(self, batch, ni):
|
def plot_val_samples(self, batch, ni):
|
||||||
"""Plot validation image samples."""
|
"""Plot validation image samples."""
|
||||||
|
@ -7,6 +7,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
|||||||
|
|
||||||
class PosePredictor(DetectionPredictor):
|
class PosePredictor(DetectionPredictor):
|
||||||
|
|
||||||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||||
|
super().__init__(cfg, overrides, _callbacks)
|
||||||
|
self.args.task = 'pose'
|
||||||
|
|
||||||
def postprocess(self, preds, img, orig_img):
|
def postprocess(self, preds, img, orig_img):
|
||||||
"""Return detection results for a given input image or list of images."""
|
"""Return detection results for a given input image or list of images."""
|
||||||
preds = ops.non_max_suppression(preds,
|
preds = ops.non_max_suppression(preds,
|
||||||
@ -24,7 +28,7 @@ class PosePredictor(DetectionPredictor):
|
|||||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
||||||
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
||||||
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)
|
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)
|
||||||
path, _, _, _, _ = self.batch
|
path = self.batch[0]
|
||||||
img_path = path[i] if isinstance(path, list) else path
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
results.append(
|
results.append(
|
||||||
Results(orig_img=orig_img,
|
Results(orig_img=orig_img,
|
||||||
|
@ -9,6 +9,10 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
|||||||
|
|
||||||
class SegmentationPredictor(DetectionPredictor):
|
class SegmentationPredictor(DetectionPredictor):
|
||||||
|
|
||||||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||||
|
super().__init__(cfg, overrides, _callbacks)
|
||||||
|
self.args.task = 'segment'
|
||||||
|
|
||||||
def postprocess(self, preds, img, orig_imgs):
|
def postprocess(self, preds, img, orig_imgs):
|
||||||
"""TODO: filter by classes."""
|
"""TODO: filter by classes."""
|
||||||
p = ops.non_max_suppression(preds[0],
|
p = ops.non_max_suppression(preds[0],
|
||||||
@ -22,7 +26,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|||||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||||
for i, pred in enumerate(p):
|
for i, pred in enumerate(p):
|
||||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||||
path, _, _, _, _ = self.batch
|
path = self.batch[0]
|
||||||
img_path = path[i] if isinstance(path, list) else path
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
if not len(pred): # save empty boxes
|
if not len(pred): # save empty boxes
|
||||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user