mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Fix ClearML Mosaic callback to 'on_train_epoch_end' (#92)
This commit is contained in:
parent
0298821467
commit
249dfbdc05
@ -47,6 +47,7 @@ class BaseValidator:
|
||||
model = model.half() if self.args.half else model.float()
|
||||
self.model = model
|
||||
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
||||
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch
|
||||
else:
|
||||
assert model is not None, "Either trainer or model is needed for validation"
|
||||
self.device = select_device(self.args.device, self.args.batch_size)
|
||||
|
@ -1,6 +1,3 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
try:
|
||||
@ -30,12 +27,9 @@ def on_train_start(trainer):
|
||||
task.connect(dict(trainer.args), name='General')
|
||||
|
||||
|
||||
def on_epoch_start(trainer):
|
||||
def on_train_epoch_end(trainer):
|
||||
if trainer.epoch == 1:
|
||||
plots = [filename for filename in os.listdir(trainer.save_dir) if filename.startswith("train_batch")]
|
||||
imgs_dict = {f"train_batch_{i}": Path(trainer.save_dir) / img for i, img in enumerate(plots)}
|
||||
if imgs_dict:
|
||||
_log_images(imgs_dict, "Mosaic", trainer.epoch)
|
||||
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, "Mosaic", trainer.epoch)
|
||||
|
||||
|
||||
def on_val_end(trainer):
|
||||
@ -55,6 +49,6 @@ def on_train_end(trainer):
|
||||
|
||||
callbacks = {
|
||||
"on_train_start": on_train_start,
|
||||
"on_epoch_start": on_epoch_start,
|
||||
"on_train_epoch_end": on_train_epoch_end,
|
||||
"on_val_end": on_val_end,
|
||||
"on_train_end": on_train_end} if clearml else {}
|
||||
|
@ -343,7 +343,7 @@ def compute_ap(recall, precision):
|
||||
return ap, mpre, mrec
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=""):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
@ -398,10 +398,10 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
||||
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
||||
names = dict(enumerate(names)) # to dict
|
||||
if plot:
|
||||
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
||||
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
||||
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
||||
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
||||
plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names)
|
||||
plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1')
|
||||
plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision')
|
||||
plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall')
|
||||
|
||||
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
||||
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
||||
|
@ -63,16 +63,15 @@ class DetectionTrainer(BaseTrainer):
|
||||
return dict(zip(keys, loss_items)) if loss_items is not None else keys
|
||||
|
||||
def progress_string(self):
|
||||
return ('\n' + '%11s' * 7) % \
|
||||
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
return ('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
images = batch["img"]
|
||||
cls = batch["cls"].squeeze(-1)
|
||||
bboxes = batch["bboxes"]
|
||||
paths = batch["im_file"]
|
||||
batch_idx = batch["batch_idx"]
|
||||
plot_images(images, batch_idx, cls, bboxes, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
|
||||
plot_images(images=batch["img"],
|
||||
batch_idx=batch["batch_idx"],
|
||||
cls=batch["cls"].squeeze(-1),
|
||||
bboxes=batch["bboxes"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"train_batch{ni}.jpg")
|
||||
|
||||
def plot_metrics(self):
|
||||
plot_results(file=self.csv) # save results.png
|
||||
|
@ -214,8 +214,7 @@ class SegmentationTrainer(DetectionTrainer):
|
||||
return dict(zip(keys, loss_items)) if loss_items is not None else keys
|
||||
|
||||
def progress_string(self):
|
||||
return ('\n' + '%11s' * 8) % \
|
||||
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
return ('\n' + '%11s' * 8) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
images = batch["img"]
|
||||
|
Loading…
x
Reference in New Issue
Block a user