diff --git a/README.md b/README.md index fbb74d4c..72c72144 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ # [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458) -Official PyTorch implementation of **YOLOv10**. +Official PyTorch implementation of **YOLOv10**. NeurIPS 2024.
diff --git a/docker/Dockerfile b/docker/Dockerfile
index b96173ee..f6ef8b45 100644
--- a/docker/Dockerfile
+++ b/docker/Dockerfile
@@ -14,7 +14,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
# Install linux packages
# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
RUN apt update \
- && apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0
+ && apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 build-essential
# Security updates
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
diff --git a/docs/en/modes/export.md b/docs/en/modes/export.md
index 5859b18b..1b0827ad 100644
--- a/docs/en/modes/export.md
+++ b/docs/en/modes/export.md
@@ -83,7 +83,7 @@ This table details the configurations and options available for exporting YOLO m
| `half` | `bool` | `False` | Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware. |
| `int8` | `bool` | `False` | Activates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices. |
| `dynamic` | `bool` | `False` | Allows dynamic input sizes for ONNX and TensorRT exports, enhancing flexibility in handling varying image dimensions. |
-| `simplify` | `bool` | `False` | Simplifies the model graph for ONNX exports, potentially improving performance and compatibility. |
+| `simplify` | `bool` | `False` | Simplifies the model graph for ONNX exports with `onnxsim`, potentially improving performance and compatibility. |
| `opset` | `int` | `None` | Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version. |
| `workspace` | `float` | `4.0` | Sets the maximum workspace size in GB for TensorRT optimizations, balancing memory usage and performance. |
| `nms` | `bool` | `False` | Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing. |
diff --git a/requirements.txt b/requirements.txt
index 680357a7..019d1ae4 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -5,7 +5,7 @@ onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
-onnxsim==0.4.36
+onnxslim==0.1.31
gradio==4.31.5
opencv-python==4.9.0.80
psutil==5.9.8
diff --git a/ultralytics/cfg/default.yaml b/ultralytics/cfg/default.yaml
index bc64897e..bd074b10 100644
--- a/ultralytics/cfg/default.yaml
+++ b/ultralytics/cfg/default.yaml
@@ -82,7 +82,7 @@ keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
-simplify: False # (bool) ONNX: simplify model
+simplify: False # (bool) ONNX: simplify model using `onnxslim`
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS
diff --git a/ultralytics/engine/exporter.py b/ultralytics/engine/exporter.py
index 1fa3f2e1..6ac170c5 100644
--- a/ultralytics/engine/exporter.py
+++ b/ultralytics/engine/exporter.py
@@ -355,9 +355,7 @@ class Exporter:
"""YOLOv8 ONNX export."""
requirements = ["onnx>=1.12.0"]
if self.args.simplify:
- requirements += ["onnxsim>=0.4.33", "onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime"]
- if ARM64:
- check_requirements("cmake") # 'cmake' is needed to build onnxsim on aarch64
+ requirements += ["onnxslim==0.1.31", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
check_requirements(requirements)
import onnx # noqa
@@ -394,14 +392,17 @@ class Exporter:
# Simplify
if self.args.simplify:
try:
- import onnxsim
+ import onnxslim
- LOGGER.info(f"{prefix} simplifying with onnxsim {onnxsim.__version__}...")
- # subprocess.run(f'onnxsim "{f}" "{f}"', shell=True)
- model_onnx, check = onnxsim.simplify(model_onnx)
- assert check, "Simplified ONNX model could not be validated"
+ LOGGER.info(f"{prefix} simplifying with onnxslim {onnxslim.__version__}...")
+ model_onnx = onnxslim.slim(model_onnx)
+
+ # ONNX Simplifier (deprecated as must be compiled with 'cmake' in aarch64 and Conda CI environments)
+ # import onnxsim
+ # model_onnx, check = onnxsim.simplify(model_onnx)
+ # assert check, "Simplified ONNX model could not be validated"
except Exception as e:
- LOGGER.info(f"{prefix} simplifier failure: {e}")
+ LOGGER.warning(f"{prefix} simplifier failure: {e}")
# Metadata
for k, v in self.metadata.items():
@@ -656,7 +657,7 @@ class Exporter:
def export_engine(self, prefix=colorstr("TensorRT:")):
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
- f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016
+ f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
try:
import tensorrt as trt # noqa
@@ -741,7 +742,7 @@ class Exporter:
"onnx>=1.12.0",
"onnx2tf>=1.15.4,<=1.17.5",
"sng4onnx>=1.0.1",
- "onnxsim>=0.4.33",
+ "onnxslim==0.1.31",
"onnx_graphsurgeon>=0.3.26",
"tflite_support",
"flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package
diff --git a/ultralytics/nn/modules/__init__.py b/ultralytics/nn/modules/__init__.py
index 4a99bf59..7f4c4fed 100644
--- a/ultralytics/nn/modules/__init__.py
+++ b/ultralytics/nn/modules/__init__.py
@@ -13,7 +13,7 @@ Example:
m = Conv(128, 128)
f = f'{m._get_name()}.onnx'
torch.onnx.export(m, x, f)
- os.system(f'onnxsim {f} {f} && open {f}')
+ os.system(f'onnxslim {f} {f} && open {f}') # pip install onnxslim
```
"""
diff --git a/ultralytics/utils/benchmarks.py b/ultralytics/utils/benchmarks.py
index 3bc63510..02869906 100644
--- a/ultralytics/utils/benchmarks.py
+++ b/ultralytics/utils/benchmarks.py
@@ -323,6 +323,8 @@ class ProfileModels:
input_tensor = sess.get_inputs()[0]
input_type = input_tensor.type
+ dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape) # dynamic input shape
+ input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape
# Mapping ONNX datatype to numpy datatype
if "float16" in input_type:
@@ -338,7 +340,7 @@ class ProfileModels:
else:
raise ValueError(f"Unsupported ONNX datatype {input_type}")
- input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
+ input_data = np.random.rand(*input_shape).astype(input_dtype)
input_name = input_tensor.name
output_name = sess.get_outputs()[0].name