mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-10-26 11:15:38 +08:00 
			
		
		
		
	ultralytics 8.1.25 fix **kwargs: (dict) warnings (#8815)
				
					
				
			Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		
							parent
							
								
									f8f62bc649
								
							
						
					
					
						commit
						2bc605f32a
					
				| @ -200,7 +200,7 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with | |||||||
| | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024                  | 80.7               | 1278.42                        | 11.83                               | 44.5               | 433.8             | | | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024                  | 80.7               | 1278.42                        | 11.83                               | 44.5               | 433.8             | | ||||||
| | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024                  | 81.36              | 1759.10                        | 13.23                               | 69.5               | 676.7             | | | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024                  | 81.36              | 1759.10                        | 13.23                               | 69.5               | 676.7             | | ||||||
| 
 | 
 | ||||||
| - **mAP<sup>test</sup>** values are for single-model multi-scale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html). | - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html). | ||||||
| - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu` | - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu` | ||||||
| 
 | 
 | ||||||
| </details> | </details> | ||||||
|  | |||||||
| @ -81,14 +81,14 @@ To train DOTA dataset, we split original DOTA images with high-resolution into i | |||||||
|         split_trainval( |         split_trainval( | ||||||
|             data_root='path/to/DOTAv1.0/', |             data_root='path/to/DOTAv1.0/', | ||||||
|             save_dir='path/to/DOTAv1.0-split/', |             save_dir='path/to/DOTAv1.0-split/', | ||||||
|             rates=[0.5, 1.0, 1.5],    # multi-scale |             rates=[0.5, 1.0, 1.5],    # multiscale | ||||||
|             gap=500 |             gap=500 | ||||||
|         ) |         ) | ||||||
|         # split test set, without labels. |         # split test set, without labels. | ||||||
|         split_test( |         split_test( | ||||||
|             data_root='path/to/DOTAv1.0/', |             data_root='path/to/DOTAv1.0/', | ||||||
|             save_dir='path/to/DOTAv1.0-split/', |             save_dir='path/to/DOTAv1.0-split/', | ||||||
|             rates=[0.5, 1.0, 1.5],    # multi-scale |             rates=[0.5, 1.0, 1.5],    # multiscale | ||||||
|             gap=500 |             gap=500 | ||||||
|         ) |         ) | ||||||
|         ``` |         ``` | ||||||
|  | |||||||
| @ -1,6 +1,6 @@ | |||||||
| # Ultralytics YOLO 🚀, AGPL-3.0 license | # Ultralytics YOLO 🚀, AGPL-3.0 license | ||||||
| 
 | 
 | ||||||
| __version__ = "8.1.24" | __version__ = "8.1.25" | ||||||
| 
 | 
 | ||||||
| from ultralytics.data.explorer.explorer import Explorer | from ultralytics.data.explorer.explorer import Explorer | ||||||
| from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld | from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld | ||||||
|  | |||||||
| @ -34,7 +34,7 @@ amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, Fals | |||||||
| fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) | fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) | ||||||
| profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers | profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers | ||||||
| freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training | freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training | ||||||
| multi_scale: False # (bool) Whether to use multi-scale during training | multi_scale: False # (bool) Whether to use multiscale during training | ||||||
| # Segmentation | # Segmentation | ||||||
| overlap_mask: True # (bool) masks should overlap during training (segment train only) | overlap_mask: True # (bool) masks should overlap during training (segment train only) | ||||||
| mask_ratio: 4 # (int) mask downsample ratio (segment train only) | mask_ratio: 4 # (int) mask downsample ratio (segment train only) | ||||||
|  | |||||||
| @ -161,7 +161,7 @@ class Model(nn.Module): | |||||||
|                 Defaults to None. |                 Defaults to None. | ||||||
|             stream (bool, optional): If True, treats the input source as a continuous stream for predictions. |             stream (bool, optional): If True, treats the input source as a continuous stream for predictions. | ||||||
|                 Defaults to False. |                 Defaults to False. | ||||||
|             **kwargs (dict): Additional keyword arguments for configuring the prediction process. |             **kwargs (any): Additional keyword arguments for configuring the prediction process. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
|             (List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class. |             (List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class. | ||||||
| @ -368,7 +368,7 @@ class Model(nn.Module): | |||||||
|             source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings. |             source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings. | ||||||
|                 The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None. |                 The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None. | ||||||
|             stream (bool): If True, predictions are streamed. Defaults to False. |             stream (bool): If True, predictions are streamed. Defaults to False. | ||||||
|             **kwargs (dict): Additional keyword arguments for configuring the embedding process. |             **kwargs (any): Additional keyword arguments for configuring the embedding process. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
|             (List[torch.Tensor]): A list containing the image embeddings. |             (List[torch.Tensor]): A list containing the image embeddings. | ||||||
| @ -406,7 +406,7 @@ class Model(nn.Module): | |||||||
|             stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False. |             stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False. | ||||||
|             predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions. |             predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions. | ||||||
|                 If None, the method uses a default predictor. Defaults to None. |                 If None, the method uses a default predictor. Defaults to None. | ||||||
|             **kwargs (dict): Additional keyword arguments for configuring the prediction process. These arguments allow |             **kwargs (any): Additional keyword arguments for configuring the prediction process. These arguments allow | ||||||
|                 for further customization of the prediction behavior. |                 for further customization of the prediction behavior. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -460,7 +460,7 @@ class Model(nn.Module): | |||||||
|             source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream. |             source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream. | ||||||
|             stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False. |             stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False. | ||||||
|             persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False. |             persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False. | ||||||
|             **kwargs (dict): Additional keyword arguments for configuring the tracking process. These arguments allow |             **kwargs (any): Additional keyword arguments for configuring the tracking process. These arguments allow | ||||||
|                 for further customization of the tracking behavior. |                 for further customization of the tracking behavior. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -497,7 +497,7 @@ class Model(nn.Module): | |||||||
|         Args: |         Args: | ||||||
|             validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If |             validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If | ||||||
|                 None, the method uses a default validator. Defaults to None. |                 None, the method uses a default validator. Defaults to None. | ||||||
|             **kwargs (dict): Arbitrary keyword arguments representing the validation configuration. These arguments are |             **kwargs (any): Arbitrary keyword arguments representing the validation configuration. These arguments are | ||||||
|                 used to customize various aspects of the validation process. |                 used to customize various aspects of the validation process. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -531,7 +531,7 @@ class Model(nn.Module): | |||||||
|         configurable options, users should refer to the 'configuration' section in the documentation. |         configurable options, users should refer to the 'configuration' section in the documentation. | ||||||
| 
 | 
 | ||||||
|         Args: |         Args: | ||||||
|             **kwargs (dict): Arbitrary keyword arguments to customize the benchmarking process. These are combined with |             **kwargs (any): Arbitrary keyword arguments to customize the benchmarking process. These are combined with | ||||||
|                 default configurations, model-specific arguments, and method defaults. |                 default configurations, model-specific arguments, and method defaults. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -570,7 +570,7 @@ class Model(nn.Module): | |||||||
|         possible arguments, refer to the 'configuration' section in the documentation. |         possible arguments, refer to the 'configuration' section in the documentation. | ||||||
| 
 | 
 | ||||||
|         Args: |         Args: | ||||||
|             **kwargs (dict): Arbitrary keyword arguments to customize the export process. These are combined with the |             **kwargs (any): Arbitrary keyword arguments to customize the export process. These are combined with the | ||||||
|                 model's overrides and method defaults. |                 model's overrides and method defaults. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -607,7 +607,7 @@ class Model(nn.Module): | |||||||
|         Args: |         Args: | ||||||
|             trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the |             trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the | ||||||
|                 method uses a default trainer. Defaults to None. |                 method uses a default trainer. Defaults to None. | ||||||
|             **kwargs (dict): Arbitrary keyword arguments representing the training configuration. These arguments are |             **kwargs (any): Arbitrary keyword arguments representing the training configuration. These arguments are | ||||||
|                 used to customize various aspects of the training process. |                 used to customize various aspects of the training process. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
| @ -679,7 +679,7 @@ class Model(nn.Module): | |||||||
|             use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False. |             use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False. | ||||||
|             iterations (int): The number of tuning iterations to perform. Defaults to 10. |             iterations (int): The number of tuning iterations to perform. Defaults to 10. | ||||||
|             *args (list): Variable length argument list for additional arguments. |             *args (list): Variable length argument list for additional arguments. | ||||||
|             **kwargs (dict): Arbitrary keyword arguments. These are combined with the model's overrides and defaults. |             **kwargs (any): Arbitrary keyword arguments. These are combined with the model's overrides and defaults. | ||||||
| 
 | 
 | ||||||
|         Returns: |         Returns: | ||||||
|             (dict): A dictionary containing the results of the hyperparameter search. |             (dict): A dictionary containing the results of the hyperparameter search. | ||||||
|  | |||||||
| @ -280,7 +280,7 @@ class BaseTrainer: | |||||||
|         # Check imgsz |         # Check imgsz | ||||||
|         gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32)  # grid size (max stride) |         gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32)  # grid size (max stride) | ||||||
|         self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) |         self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) | ||||||
|         self.stride = gs  # for multi-scale training |         self.stride = gs  # for multiscale training | ||||||
| 
 | 
 | ||||||
|         # Batch size |         # Batch size | ||||||
|         if self.batch_size == -1 and RANK == -1:  # single-GPU only, estimate best batch size |         if self.batch_size == -1 and RANK == -1:  # single-GPU only, estimate best batch size | ||||||
|  | |||||||
| @ -84,7 +84,7 @@ def requests_with_progress(method, url, **kwargs): | |||||||
|     Args: |     Args: | ||||||
|         method (str): The HTTP method to use (e.g. 'GET', 'POST'). |         method (str): The HTTP method to use (e.g. 'GET', 'POST'). | ||||||
|         url (str): The URL to send the request to. |         url (str): The URL to send the request to. | ||||||
|         **kwargs (dict): Additional keyword arguments to pass to the underlying `requests.request` function. |         **kwargs (any): Additional keyword arguments to pass to the underlying `requests.request` function. | ||||||
| 
 | 
 | ||||||
|     Returns: |     Returns: | ||||||
|         (requests.Response): The response object from the HTTP request. |         (requests.Response): The response object from the HTTP request. | ||||||
| @ -122,7 +122,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos | |||||||
|         code (int, optional): An identifier for the request, used for logging purposes. Default is -1. |         code (int, optional): An identifier for the request, used for logging purposes. Default is -1. | ||||||
|         verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True. |         verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True. | ||||||
|         progress (bool, optional): Whether to show a progress bar during the request. Default is False. |         progress (bool, optional): Whether to show a progress bar during the request. Default is False. | ||||||
|         **kwargs (dict): Keyword arguments to be passed to the requests function specified in method. |         **kwargs (any): Keyword arguments to be passed to the requests function specified in method. | ||||||
| 
 | 
 | ||||||
|     Returns: |     Returns: | ||||||
|         (requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None. |         (requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None. | ||||||
|  | |||||||
| @ -215,7 +215,7 @@ class LayerNorm2d(nn.Module): | |||||||
| 
 | 
 | ||||||
| class MSDeformAttn(nn.Module): | class MSDeformAttn(nn.Module): | ||||||
|     """ |     """ | ||||||
|     Multi-Scale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations. |     Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations. | ||||||
| 
 | 
 | ||||||
|     https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py |     https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py | ||||||
|     """ |     """ | ||||||
|  | |||||||
| @ -46,7 +46,7 @@ def multi_scale_deformable_attn_pytorch( | |||||||
|     attention_weights: torch.Tensor, |     attention_weights: torch.Tensor, | ||||||
| ) -> torch.Tensor: | ) -> torch.Tensor: | ||||||
|     """ |     """ | ||||||
|     Multi-scale deformable attention. |     Multiscale deformable attention. | ||||||
| 
 | 
 | ||||||
|     https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py |     https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py | ||||||
|     """ |     """ | ||||||
|  | |||||||
| @ -113,7 +113,7 @@ class TQDM(tqdm_original): | |||||||
| 
 | 
 | ||||||
|     Args: |     Args: | ||||||
|         *args (list): Positional arguments passed to original tqdm. |         *args (list): Positional arguments passed to original tqdm. | ||||||
|         **kwargs (dict): Keyword arguments, with custom defaults applied. |         **kwargs (any): Keyword arguments, with custom defaults applied. | ||||||
|     """ |     """ | ||||||
| 
 | 
 | ||||||
|     def __init__(self, *args, **kwargs): |     def __init__(self, *args, **kwargs): | ||||||
|  | |||||||
| @ -410,7 +410,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.1.0", ** | |||||||
|         file (str | Path): The filename or file path to be downloaded. |         file (str | Path): The filename or file path to be downloaded. | ||||||
|         repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'. |         repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'. | ||||||
|         release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'. |         release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'. | ||||||
|         **kwargs (dict): Additional keyword arguments for the download process. |         **kwargs (any): Additional keyword arguments for the download process. | ||||||
| 
 | 
 | ||||||
|     Returns: |     Returns: | ||||||
|         (str): The path to the downloaded file. |         (str): The path to the downloaded file. | ||||||
|  | |||||||
| @ -68,7 +68,7 @@ def torch_save(*args, use_dill=True, **kwargs): | |||||||
|     Args: |     Args: | ||||||
|         *args (tuple): Positional arguments to pass to torch.save. |         *args (tuple): Positional arguments to pass to torch.save. | ||||||
|         use_dill (bool): Whether to try using dill for serialization if available. Defaults to True. |         use_dill (bool): Whether to try using dill for serialization if available. Defaults to True. | ||||||
|         **kwargs (dict): Keyword arguments to pass to torch.save. |         **kwargs (any): Keyword arguments to pass to torch.save. | ||||||
|     """ |     """ | ||||||
|     try: |     try: | ||||||
|         assert use_dill |         assert use_dill | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Glenn Jocher
						Glenn Jocher