mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.1.25
fix **kwargs: (dict)
warnings (#8815)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
f8f62bc649
commit
2bc605f32a
@ -200,7 +200,7 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|||||||
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
|
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
|
||||||
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
|
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
|
||||||
|
|
||||||
- **mAP<sup>test</sup>** values are for single-model multi-scale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
||||||
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
@ -81,14 +81,14 @@ To train DOTA dataset, we split original DOTA images with high-resolution into i
|
|||||||
split_trainval(
|
split_trainval(
|
||||||
data_root='path/to/DOTAv1.0/',
|
data_root='path/to/DOTAv1.0/',
|
||||||
save_dir='path/to/DOTAv1.0-split/',
|
save_dir='path/to/DOTAv1.0-split/',
|
||||||
rates=[0.5, 1.0, 1.5], # multi-scale
|
rates=[0.5, 1.0, 1.5], # multiscale
|
||||||
gap=500
|
gap=500
|
||||||
)
|
)
|
||||||
# split test set, without labels.
|
# split test set, without labels.
|
||||||
split_test(
|
split_test(
|
||||||
data_root='path/to/DOTAv1.0/',
|
data_root='path/to/DOTAv1.0/',
|
||||||
save_dir='path/to/DOTAv1.0-split/',
|
save_dir='path/to/DOTAv1.0-split/',
|
||||||
rates=[0.5, 1.0, 1.5], # multi-scale
|
rates=[0.5, 1.0, 1.5], # multiscale
|
||||||
gap=500
|
gap=500
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = "8.1.24"
|
__version__ = "8.1.25"
|
||||||
|
|
||||||
from ultralytics.data.explorer.explorer import Explorer
|
from ultralytics.data.explorer.explorer import Explorer
|
||||||
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
|
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
|
||||||
|
@ -34,7 +34,7 @@ amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, Fals
|
|||||||
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
||||||
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
||||||
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
|
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
|
||||||
multi_scale: False # (bool) Whether to use multi-scale during training
|
multi_scale: False # (bool) Whether to use multiscale during training
|
||||||
# Segmentation
|
# Segmentation
|
||||||
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
||||||
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
||||||
|
@ -161,7 +161,7 @@ class Model(nn.Module):
|
|||||||
Defaults to None.
|
Defaults to None.
|
||||||
stream (bool, optional): If True, treats the input source as a continuous stream for predictions.
|
stream (bool, optional): If True, treats the input source as a continuous stream for predictions.
|
||||||
Defaults to False.
|
Defaults to False.
|
||||||
**kwargs (dict): Additional keyword arguments for configuring the prediction process.
|
**kwargs (any): Additional keyword arguments for configuring the prediction process.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
||||||
@ -368,7 +368,7 @@ class Model(nn.Module):
|
|||||||
source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings.
|
source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings.
|
||||||
The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None.
|
The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None.
|
||||||
stream (bool): If True, predictions are streamed. Defaults to False.
|
stream (bool): If True, predictions are streamed. Defaults to False.
|
||||||
**kwargs (dict): Additional keyword arguments for configuring the embedding process.
|
**kwargs (any): Additional keyword arguments for configuring the embedding process.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(List[torch.Tensor]): A list containing the image embeddings.
|
(List[torch.Tensor]): A list containing the image embeddings.
|
||||||
@ -406,7 +406,7 @@ class Model(nn.Module):
|
|||||||
stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False.
|
stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False.
|
||||||
predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions.
|
predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions.
|
||||||
If None, the method uses a default predictor. Defaults to None.
|
If None, the method uses a default predictor. Defaults to None.
|
||||||
**kwargs (dict): Additional keyword arguments for configuring the prediction process. These arguments allow
|
**kwargs (any): Additional keyword arguments for configuring the prediction process. These arguments allow
|
||||||
for further customization of the prediction behavior.
|
for further customization of the prediction behavior.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -460,7 +460,7 @@ class Model(nn.Module):
|
|||||||
source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream.
|
source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream.
|
||||||
stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False.
|
stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False.
|
||||||
persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False.
|
persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False.
|
||||||
**kwargs (dict): Additional keyword arguments for configuring the tracking process. These arguments allow
|
**kwargs (any): Additional keyword arguments for configuring the tracking process. These arguments allow
|
||||||
for further customization of the tracking behavior.
|
for further customization of the tracking behavior.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -497,7 +497,7 @@ class Model(nn.Module):
|
|||||||
Args:
|
Args:
|
||||||
validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If
|
validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If
|
||||||
None, the method uses a default validator. Defaults to None.
|
None, the method uses a default validator. Defaults to None.
|
||||||
**kwargs (dict): Arbitrary keyword arguments representing the validation configuration. These arguments are
|
**kwargs (any): Arbitrary keyword arguments representing the validation configuration. These arguments are
|
||||||
used to customize various aspects of the validation process.
|
used to customize various aspects of the validation process.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -531,7 +531,7 @@ class Model(nn.Module):
|
|||||||
configurable options, users should refer to the 'configuration' section in the documentation.
|
configurable options, users should refer to the 'configuration' section in the documentation.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
**kwargs (dict): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
|
**kwargs (any): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
|
||||||
default configurations, model-specific arguments, and method defaults.
|
default configurations, model-specific arguments, and method defaults.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -570,7 +570,7 @@ class Model(nn.Module):
|
|||||||
possible arguments, refer to the 'configuration' section in the documentation.
|
possible arguments, refer to the 'configuration' section in the documentation.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
**kwargs (dict): Arbitrary keyword arguments to customize the export process. These are combined with the
|
**kwargs (any): Arbitrary keyword arguments to customize the export process. These are combined with the
|
||||||
model's overrides and method defaults.
|
model's overrides and method defaults.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -607,7 +607,7 @@ class Model(nn.Module):
|
|||||||
Args:
|
Args:
|
||||||
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
|
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
|
||||||
method uses a default trainer. Defaults to None.
|
method uses a default trainer. Defaults to None.
|
||||||
**kwargs (dict): Arbitrary keyword arguments representing the training configuration. These arguments are
|
**kwargs (any): Arbitrary keyword arguments representing the training configuration. These arguments are
|
||||||
used to customize various aspects of the training process.
|
used to customize various aspects of the training process.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -679,7 +679,7 @@ class Model(nn.Module):
|
|||||||
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
|
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
|
||||||
iterations (int): The number of tuning iterations to perform. Defaults to 10.
|
iterations (int): The number of tuning iterations to perform. Defaults to 10.
|
||||||
*args (list): Variable length argument list for additional arguments.
|
*args (list): Variable length argument list for additional arguments.
|
||||||
**kwargs (dict): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
|
**kwargs (any): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(dict): A dictionary containing the results of the hyperparameter search.
|
(dict): A dictionary containing the results of the hyperparameter search.
|
||||||
|
@ -280,7 +280,7 @@ class BaseTrainer:
|
|||||||
# Check imgsz
|
# Check imgsz
|
||||||
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
|
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
|
||||||
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
|
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
|
||||||
self.stride = gs # for multi-scale training
|
self.stride = gs # for multiscale training
|
||||||
|
|
||||||
# Batch size
|
# Batch size
|
||||||
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
|
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
|
||||||
|
@ -84,7 +84,7 @@ def requests_with_progress(method, url, **kwargs):
|
|||||||
Args:
|
Args:
|
||||||
method (str): The HTTP method to use (e.g. 'GET', 'POST').
|
method (str): The HTTP method to use (e.g. 'GET', 'POST').
|
||||||
url (str): The URL to send the request to.
|
url (str): The URL to send the request to.
|
||||||
**kwargs (dict): Additional keyword arguments to pass to the underlying `requests.request` function.
|
**kwargs (any): Additional keyword arguments to pass to the underlying `requests.request` function.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(requests.Response): The response object from the HTTP request.
|
(requests.Response): The response object from the HTTP request.
|
||||||
@ -122,7 +122,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
|
|||||||
code (int, optional): An identifier for the request, used for logging purposes. Default is -1.
|
code (int, optional): An identifier for the request, used for logging purposes. Default is -1.
|
||||||
verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True.
|
verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True.
|
||||||
progress (bool, optional): Whether to show a progress bar during the request. Default is False.
|
progress (bool, optional): Whether to show a progress bar during the request. Default is False.
|
||||||
**kwargs (dict): Keyword arguments to be passed to the requests function specified in method.
|
**kwargs (any): Keyword arguments to be passed to the requests function specified in method.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None.
|
(requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None.
|
||||||
|
@ -215,7 +215,7 @@ class LayerNorm2d(nn.Module):
|
|||||||
|
|
||||||
class MSDeformAttn(nn.Module):
|
class MSDeformAttn(nn.Module):
|
||||||
"""
|
"""
|
||||||
Multi-Scale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||||
|
|
||||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||||
"""
|
"""
|
||||||
|
@ -46,7 +46,7 @@ def multi_scale_deformable_attn_pytorch(
|
|||||||
attention_weights: torch.Tensor,
|
attention_weights: torch.Tensor,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
Multi-scale deformable attention.
|
Multiscale deformable attention.
|
||||||
|
|
||||||
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
||||||
"""
|
"""
|
||||||
|
@ -113,7 +113,7 @@ class TQDM(tqdm_original):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
*args (list): Positional arguments passed to original tqdm.
|
*args (list): Positional arguments passed to original tqdm.
|
||||||
**kwargs (dict): Keyword arguments, with custom defaults applied.
|
**kwargs (any): Keyword arguments, with custom defaults applied.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
|
@ -410,7 +410,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.1.0", **
|
|||||||
file (str | Path): The filename or file path to be downloaded.
|
file (str | Path): The filename or file path to be downloaded.
|
||||||
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
|
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
|
||||||
release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'.
|
release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'.
|
||||||
**kwargs (dict): Additional keyword arguments for the download process.
|
**kwargs (any): Additional keyword arguments for the download process.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
(str): The path to the downloaded file.
|
(str): The path to the downloaded file.
|
||||||
|
@ -68,7 +68,7 @@ def torch_save(*args, use_dill=True, **kwargs):
|
|||||||
Args:
|
Args:
|
||||||
*args (tuple): Positional arguments to pass to torch.save.
|
*args (tuple): Positional arguments to pass to torch.save.
|
||||||
use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
|
use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
|
||||||
**kwargs (dict): Keyword arguments to pass to torch.save.
|
**kwargs (any): Keyword arguments to pass to torch.save.
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
assert use_dill
|
assert use_dill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user