mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-10-30 05:15:38 +08:00 
			
		
		
		
	ultralytics 8.1.28 avoid * ops on bool Tensors for RT-DETR OpenVINO export (#8937)
				
					
				
			Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		
							parent
							
								
									bc34ae560b
								
							
						
					
					
						commit
						2d513a9e4b
					
				| @ -1,6 +1,6 @@ | |||||||
| # Ultralytics YOLO 🚀, AGPL-3.0 license | # Ultralytics YOLO 🚀, AGPL-3.0 license | ||||||
| 
 | 
 | ||||||
| __version__ = "8.1.27" | __version__ = "8.1.28" | ||||||
| 
 | 
 | ||||||
| from ultralytics.data.explorer.explorer import Explorer | from ultralytics.data.explorer.explorer import Explorer | ||||||
| from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld | from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld | ||||||
|  | |||||||
| @ -7,8 +7,6 @@ hybrid encoder and IoU-aware query selection for enhanced detection accuracy. | |||||||
| For more information on RT-DETR, visit: https://arxiv.org/pdf/2304.08069.pdf | For more information on RT-DETR, visit: https://arxiv.org/pdf/2304.08069.pdf | ||||||
| """ | """ | ||||||
| 
 | 
 | ||||||
| from pathlib import Path |  | ||||||
| 
 |  | ||||||
| from ultralytics.engine.model import Model | from ultralytics.engine.model import Model | ||||||
| from ultralytics.nn.tasks import RTDETRDetectionModel | from ultralytics.nn.tasks import RTDETRDetectionModel | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -395,7 +395,7 @@ class RTDETRDecoder(nn.Module): | |||||||
|             anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))  # (1, h*w, 4) |             anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))  # (1, h*w, 4) | ||||||
| 
 | 
 | ||||||
|         anchors = torch.cat(anchors, 1)  # (1, h*w*nl, 4) |         anchors = torch.cat(anchors, 1)  # (1, h*w*nl, 4) | ||||||
|         valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)  # 1, h*w*nl, 1 |         valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True)  # 1, h*w*nl, 1 | ||||||
|         anchors = torch.log(anchors / (1 - anchors)) |         anchors = torch.log(anchors / (1 - anchors)) | ||||||
|         anchors = anchors.masked_fill(~valid_mask, float("inf")) |         anchors = anchors.masked_fill(~valid_mask, float("inf")) | ||||||
|         return anchors, valid_mask |         return anchors, valid_mask | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Kayzwer
						Kayzwer