mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
ultralytics 8.1.27
batched tracking fixes (#8842)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
3555785167
commit
2ea6b2b889
@ -301,7 +301,7 @@ def test_predict_callback_and_setup():
|
||||
|
||||
def on_predict_batch_end(predictor):
|
||||
"""Callback function that handles operations at the end of a prediction batch."""
|
||||
path, im0s, _, _ = predictor.batch
|
||||
path, im0s, _ = predictor.batch
|
||||
im0s = im0s if isinstance(im0s, list) else [im0s]
|
||||
bs = [predictor.dataset.bs for _ in range(len(path))]
|
||||
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = "8.1.26"
|
||||
__version__ = "8.1.27"
|
||||
|
||||
from ultralytics.data.explorer.explorer import Explorer
|
||||
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
|
||||
|
@ -80,8 +80,6 @@ class LoadStreams:
|
||||
self.imgs = [[] for _ in range(n)] # images
|
||||
self.shape = [[] for _ in range(n)] # image shapes
|
||||
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
|
||||
self.info = [""] * n
|
||||
self.is_video = [True] * n
|
||||
for i, s in enumerate(sources): # index, source
|
||||
# Start thread to read frames from video stream
|
||||
st = f"{i + 1}/{n}: {s}... "
|
||||
@ -178,7 +176,7 @@ class LoadStreams:
|
||||
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
|
||||
x.clear()
|
||||
|
||||
return self.sources, images, self.is_video, self.info
|
||||
return self.sources, images, [""] * self.bs
|
||||
|
||||
def __len__(self):
|
||||
"""Return the length of the sources object."""
|
||||
@ -227,6 +225,7 @@ class LoadScreenshots:
|
||||
self.frame = 0
|
||||
self.sct = mss.mss()
|
||||
self.bs = 1
|
||||
self.fps = 30
|
||||
|
||||
# Parse monitor shape
|
||||
monitor = self.sct.monitors[self.screen]
|
||||
@ -246,7 +245,7 @@ class LoadScreenshots:
|
||||
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
|
||||
|
||||
self.frame += 1
|
||||
return [str(self.screen)], [im0], [True], [s] # screen, img, is_video, string
|
||||
return [str(self.screen)], [im0], [s] # screen, img, string
|
||||
|
||||
|
||||
class LoadImagesAndVideos:
|
||||
@ -298,6 +297,7 @@ class LoadImagesAndVideos:
|
||||
|
||||
self.files = images + videos
|
||||
self.nf = ni + nv # number of files
|
||||
self.ni = ni # number of images
|
||||
self.video_flag = [False] * ni + [True] * nv
|
||||
self.mode = "image"
|
||||
self.vid_stride = vid_stride # video frame-rate stride
|
||||
@ -319,11 +319,11 @@ class LoadImagesAndVideos:
|
||||
|
||||
def __next__(self):
|
||||
"""Returns the next batch of images or video frames along with their paths and metadata."""
|
||||
paths, imgs, is_video, info = [], [], [], []
|
||||
paths, imgs, info = [], [], []
|
||||
while len(imgs) < self.bs:
|
||||
if self.count >= self.nf: # end of file list
|
||||
if len(imgs) > 0:
|
||||
return paths, imgs, is_video, info # return last partial batch
|
||||
return paths, imgs, info # return last partial batch
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
@ -344,7 +344,6 @@ class LoadImagesAndVideos:
|
||||
self.frame += 1
|
||||
paths.append(path)
|
||||
imgs.append(im0)
|
||||
is_video.append(True)
|
||||
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
|
||||
if self.frame == self.frames: # end of video
|
||||
self.count += 1
|
||||
@ -363,16 +362,18 @@ class LoadImagesAndVideos:
|
||||
raise FileNotFoundError(f"Image Not Found {path}")
|
||||
paths.append(path)
|
||||
imgs.append(im0)
|
||||
is_video.append(False) # no capture object for images
|
||||
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
|
||||
self.count += 1 # move to the next file
|
||||
if self.count >= self.ni: # end of image list
|
||||
break
|
||||
|
||||
return paths, imgs, is_video, info
|
||||
return paths, imgs, info
|
||||
|
||||
def _new_video(self, path):
|
||||
"""Creates a new video capture object for the given path."""
|
||||
self.frame = 0
|
||||
self.cap = cv2.VideoCapture(path)
|
||||
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
|
||||
if not self.cap.isOpened():
|
||||
raise FileNotFoundError(f"Failed to open video {path}")
|
||||
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
||||
@ -429,7 +430,7 @@ class LoadPilAndNumpy:
|
||||
if self.count == 1: # loop only once as it's batch inference
|
||||
raise StopIteration
|
||||
self.count += 1
|
||||
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
|
||||
return self.paths, self.im0, [""] * self.bs
|
||||
|
||||
def __iter__(self):
|
||||
"""Enables iteration for class LoadPilAndNumpy."""
|
||||
@ -494,7 +495,7 @@ class LoadTensor:
|
||||
if self.count == 1:
|
||||
raise StopIteration
|
||||
self.count += 1
|
||||
return self.paths, self.im0, [False] * self.bs, [""] * self.bs
|
||||
return self.paths, self.im0, [""] * self.bs
|
||||
|
||||
def __len__(self):
|
||||
"""Returns the batch size."""
|
||||
|
@ -30,6 +30,7 @@ Usage - formats:
|
||||
"""
|
||||
|
||||
import platform
|
||||
import re
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
@ -236,7 +237,7 @@ class BasePredictor:
|
||||
self.run_callbacks("on_predict_start")
|
||||
for self.batch in self.dataset:
|
||||
self.run_callbacks("on_predict_batch_start")
|
||||
paths, im0s, is_video, s = self.batch
|
||||
paths, im0s, s = self.batch
|
||||
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
@ -264,7 +265,7 @@ class BasePredictor:
|
||||
"postprocess": profilers[2].dt * 1e3 / n,
|
||||
}
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, s)
|
||||
|
||||
# Print batch results
|
||||
if self.args.verbose:
|
||||
@ -308,7 +309,7 @@ class BasePredictor:
|
||||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def write_results(self, i, p, im, is_video):
|
||||
def write_results(self, i, p, im, s):
|
||||
"""Write inference results to a file or directory."""
|
||||
string = "" # print string
|
||||
if len(im.shape) == 3:
|
||||
@ -317,9 +318,10 @@ class BasePredictor:
|
||||
string += f"{i}: "
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
|
||||
match = re.search(r"frame (\d+)/", s[i])
|
||||
frame = int(match.group(1)) if match else None # 0 if frame undetermined
|
||||
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + (f"_{frame}" if is_video[i] else ""))
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
|
||||
string += "%gx%g " % im.shape[2:]
|
||||
result = self.results[i]
|
||||
result.save_dir = self.save_dir.__str__() # used in other locations
|
||||
@ -341,18 +343,19 @@ class BasePredictor:
|
||||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
|
||||
if self.args.show:
|
||||
self.show(str(p), is_video[i])
|
||||
self.show(str(p))
|
||||
if self.args.save:
|
||||
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
|
||||
self.save_predicted_images(str(self.save_dir / p.name), frame)
|
||||
|
||||
return string
|
||||
|
||||
def save_predicted_images(self, save_path="", is_video=False, frame=0):
|
||||
def save_predicted_images(self, save_path="", frame=0):
|
||||
"""Save video predictions as mp4 at specified path."""
|
||||
im = self.plotted_img
|
||||
|
||||
# Save videos and streams
|
||||
if is_video:
|
||||
if self.dataset.mode in {"stream", "video"}:
|
||||
fps = self.dataset.fps if self.dataset.mode == "video" else 30
|
||||
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
||||
if save_path not in self.vid_writer: # new video
|
||||
if self.args.save_frames:
|
||||
@ -361,7 +364,7 @@ class BasePredictor:
|
||||
self.vid_writer[save_path] = cv2.VideoWriter(
|
||||
filename=str(Path(save_path).with_suffix(suffix)),
|
||||
fourcc=cv2.VideoWriter_fourcc(*fourcc),
|
||||
fps=30, # integer required, floats produce error in MP4 codec
|
||||
fps=fps, # integer required, floats produce error in MP4 codec
|
||||
frameSize=(im.shape[1], im.shape[0]), # (width, height)
|
||||
)
|
||||
|
||||
@ -374,7 +377,7 @@ class BasePredictor:
|
||||
else:
|
||||
cv2.imwrite(save_path, im)
|
||||
|
||||
def show(self, p="", is_video=False):
|
||||
def show(self, p=""):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
@ -382,7 +385,7 @@ class BasePredictor:
|
||||
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
|
||||
cv2.imshow(p, im)
|
||||
cv2.waitKey(1 if is_video else 500) # 1 millisecond
|
||||
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all registered callbacks for a specific event."""
|
||||
|
@ -38,6 +38,8 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
|
||||
for _ in range(predictor.dataset.bs):
|
||||
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
||||
trackers.append(tracker)
|
||||
if predictor.dataset.mode != "stream": # only need one tracker for other modes.
|
||||
break
|
||||
predictor.trackers = trackers
|
||||
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
|
||||
|
||||
@ -50,20 +52,21 @@ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None
|
||||
predictor (object): The predictor object containing the predictions.
|
||||
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
|
||||
"""
|
||||
bs = predictor.dataset.bs
|
||||
path, im0s = predictor.batch[:2]
|
||||
|
||||
is_obb = predictor.args.task == "obb"
|
||||
for i in range(bs):
|
||||
is_stream = predictor.dataset.mode == "stream"
|
||||
for i in range(len(im0s)):
|
||||
tracker = predictor.trackers[i if is_stream else 0]
|
||||
vid_path = predictor.save_dir / Path(path[i]).name
|
||||
if not persist and predictor.vid_path[i] != vid_path: # new video
|
||||
predictor.trackers[i].reset()
|
||||
predictor.vid_path[i] = vid_path
|
||||
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
|
||||
tracker.reset()
|
||||
predictor.vid_path[i if is_stream else 0] = vid_path
|
||||
|
||||
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
|
||||
if len(det) == 0:
|
||||
continue
|
||||
tracks = predictor.trackers[i].update(det, im0s[i])
|
||||
tracks = tracker.update(det, im0s[i])
|
||||
if len(tracks) == 0:
|
||||
continue
|
||||
idx = tracks[:, -1].astype(int)
|
||||
|
Loading…
x
Reference in New Issue
Block a user