ultralytics 8.0.183 RayTune and yolo checks fixes (#5002)

Co-authored-by: Kapil Raj <103250862+raj-kapil@users.noreply.github.com>
Co-authored-by: Muhammad Rizwan Munawar <62513924+RizwanMunawar@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-09-20 16:33:43 +02:00 committed by GitHub
parent 7f78fad8ba
commit 3223e71fea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 124 additions and 64 deletions

View File

@ -189,7 +189,7 @@ Training settings for YOLO models refer to the various hyperparameters and confi
| `project` | `None` | project name | | `project` | `None` | project name |
| `name` | `None` | experiment name | | `name` | `None` | experiment name |
| `exist_ok` | `False` | whether to overwrite existing experiment | | `exist_ok` | `False` | whether to overwrite existing experiment |
| `pretrained` | `True` | (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) | | `pretrained` | `True` | (bool \| str) whether to use a pretrained model (bool) or a model to load weights from (str) |
| `optimizer` | `'auto'` | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] | | `optimizer` | `'auto'` | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] |
| `verbose` | `False` | whether to print verbose output | | `verbose` | `False` | whether to print verbose output |
| `seed` | `0` | random seed for reproducibility | | `seed` | `0` | random seed for reproducibility |
@ -202,7 +202,7 @@ Training settings for YOLO models refer to the various hyperparameters and confi
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] | | `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) | | `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers | | `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `freeze` | `None` | (int or list, optional) freeze first n layers, or freeze list of layer indices during training | | `freeze` | `None` | (int \| list, optional) freeze first n layers, or freeze list of layer indices during training |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) | | `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) | | `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 | | `momentum` | `0.937` | SGD momentum/Adam beta1 |

View File

@ -88,7 +88,7 @@ The training settings for YOLO models encompass various hyperparameters and conf
| `project` | `None` | project name | | `project` | `None` | project name |
| `name` | `None` | experiment name | | `name` | `None` | experiment name |
| `exist_ok` | `False` | whether to overwrite existing experiment | | `exist_ok` | `False` | whether to overwrite existing experiment |
| `pretrained` | `True` | (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) | | `pretrained` | `True` | (bool \| str) whether to use a pretrained model (bool) or a model to load weights from (str) |
| `optimizer` | `'auto'` | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] | | `optimizer` | `'auto'` | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] |
| `verbose` | `False` | whether to print verbose output | | `verbose` | `False` | whether to print verbose output |
| `seed` | `0` | random seed for reproducibility | | `seed` | `0` | random seed for reproducibility |
@ -101,7 +101,7 @@ The training settings for YOLO models encompass various hyperparameters and conf
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] | | `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) | | `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers | | `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `freeze` | `None` | (int or list, optional) freeze first n layers, or freeze list of layer indices during training | | `freeze` | `None` | (int \| list, optional) freeze first n layers, or freeze list of layer indices during training |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) | | `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) | | `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 | | `momentum` | `0.937` | SGD momentum/Adam beta1 |

View File

@ -5,8 +5,8 @@
<div> <div>
<p align="center"> <p align="center">
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/978c8dd4-936d-468e-b41e-1046741ec323" width="45%"/> <img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/5ab3bbd7-fd12-4849-928e-5f294d6c3fcf" width="45%"/>
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/069fd81b-8451-40f3-9f14-709a7ac097ca" width="45%"/> <img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/e7c1aea7-474d-4d78-8d48-b50854ffe1ca" width="45%"/>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
</p> </p>
</div> </div>
@ -42,6 +42,9 @@ After the video begins playing, you can freely move the region anywhere within t
# If you want to save results # If you want to save results
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img
# If you want to run model on CPU
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img --device cpu
# If you want to change model file # If you want to change model file
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --weights "path/to/model.pt" python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --weights "path/to/model.pt"
@ -52,10 +55,12 @@ python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
## Usage Options ## Usage Options
- `--source`: Specifies the path to the video file you want to run inference on. - `--source`: Specifies the path to the video file you want to run inference on.
- `--device`: Specifies the device `cpu` or `0`
- `--save-img`: Flag to save the detection results as images. - `--save-img`: Flag to save the detection results as images.
- `--weights`: Specifies a different YOLOv8 model file (e.g., `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt`). - `--weights`: Specifies a different YOLOv8 model file (e.g., `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt`).
- `--line-thickness`: Specifies the bounding box thickness - `--line-thickness`: Specifies the bounding box thickness
- `--region-thickness`: Specific the region boxes thickness - `--region-thickness`: Specifies the region boxes thickness
- `--track-thickness`: Specifies the track line thickness
## FAQ ## FAQ
@ -63,11 +68,40 @@ python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
Region counting is a computational method utilized to ascertain the quantity of objects within a specific area in recorded video or real-time streams. This technique finds frequent application in image processing, computer vision, and pattern recognition, facilitating the analysis and segmentation of objects or features based on their spatial relationships. Region counting is a computational method utilized to ascertain the quantity of objects within a specific area in recorded video or real-time streams. This technique finds frequent application in image processing, computer vision, and pattern recognition, facilitating the analysis and segmentation of objects or features based on their spatial relationships.
**2. Why Combine Region Counting with YOLOv8?** **2. Is Friendly Region Plotting Supported by the Region Counter?**
The Region Counter offers the capability to create regions in various formats, such as polygons and rectangles. You have the flexibility to modify region attributes, including coordinates, colors, and other details, as demonstrated in the following code:
```python
counting_regions = [
{
"name": "YOLOv8 Polygon Region",
"polygon": Polygon(
[(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]
), # Polygon with five points (Pentagon)
"counts": 0,
"dragging": False,
"region_color": (255, 42, 4), # BGR Value
"text_color": (255, 255, 255), # Region Text Color
},
{
"name": "YOLOv8 Rectangle Region",
"polygon": Polygon(
[(200, 250), (440, 250), (440, 550), (200, 550)]
), # Rectangle with four points
"counts": 0,
"dragging": False,
"region_color": (37, 255, 225), # BGR Value
"text_color": (0, 0, 0), # Region Text Color
},
]
```
**3. Why Combine Region Counting with YOLOv8?**
YOLOv8 specializes in the detection and tracking of objects in video streams. Region counting complements this by enabling object counting within designated areas, making it a valuable application of YOLOv8. YOLOv8 specializes in the detection and tracking of objects in video streams. Region counting complements this by enabling object counting within designated areas, making it a valuable application of YOLOv8.
**3. How Can I Troubleshoot Issues?** **4. How Can I Troubleshoot Issues?**
To gain more insights during inference, you can include the `--debug` flag in your command: To gain more insights during inference, you can include the `--debug` flag in your command:
@ -75,10 +109,10 @@ To gain more insights during inference, you can include the `--debug` flag in yo
python yolov8_region_counter.py --source "path to video file" --debug python yolov8_region_counter.py --source "path to video file" --debug
``` ```
**4. Can I Employ Other YOLO Versions?** **5. Can I Employ Other YOLO Versions?**
Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option. Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
**5. Where Can I Access Additional Information?** **6. Where Can I Access Additional Information?**
For a comprehensive guide on using YOLOv8 with Object Tracking, please refer to [Multi-Object Tracking with Ultralytics YOLO](https://docs.ultralytics.com/modes/track/). For a comprehensive guide on using YOLOv8 with Object Tracking, please refer to [Multi-Object Tracking with Ultralytics YOLO](https://docs.ultralytics.com/modes/track/).

View File

@ -4,34 +4,37 @@ from pathlib import Path
import cv2 import cv2
import numpy as np import numpy as np
from shapely.geometry import Polygon
from shapely.geometry.point import Point
from ultralytics import YOLO from ultralytics import YOLO
track_history = defaultdict(lambda: [])
from ultralytics.utils.files import increment_path from ultralytics.utils.files import increment_path
from ultralytics.utils.plotting import Annotator, colors from ultralytics.utils.plotting import Annotator, colors
# Region utils track_history = defaultdict(lambda: [])
current_region = None current_region = None
counting_regions = [{ counting_regions = [
'name': 'YOLOv8 Region A', {
'roi': (50, 100, 240, 300), 'name': 'YOLOv8 Polygon Region',
'counts': 0, 'polygon': Polygon([(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]), # Polygon points
'dragging': False,
'region_color': (0, 255, 0)}, {
'name': 'YOLOv8 Region B',
'roi': (200, 250, 240, 300),
'counts': 0, 'counts': 0,
'dragging': False, 'dragging': False,
'region_color': (255, 144, 31)}] 'region_color': (255, 42, 4), # BGR Value
'text_color': (255, 255, 255) # Region Text Color
},
{
'name': 'YOLOv8 Rectangle Region',
'polygon': Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]), # Polygon points
'counts': 0,
'dragging': False,
'region_color': (37, 255, 225), # BGR Value
'text_color': (0, 0, 0), # Region Text Color
}, ]
def is_inside_roi(box, roi): def is_inside_polygon(point, polygon):
"""Compare bbox with region box.""" return polygon.contains(Point(point))
x, y, _, _ = box
roi_x, roi_y, roi_w, roi_h = roi
return roi_x < x < roi_x + roi_w and roi_y < y < roi_y + roi_h
def mouse_callback(event, x, y, flags, param): def mouse_callback(event, x, y, flags, param):
@ -41,18 +44,21 @@ def mouse_callback(event, x, y, flags, param):
# Mouse left button down event # Mouse left button down event
if event == cv2.EVENT_LBUTTONDOWN: if event == cv2.EVENT_LBUTTONDOWN:
for region in counting_regions: for region in counting_regions:
roi_x, roi_y, roi_w, roi_h = region['roi'] if is_inside_polygon((x, y), region['polygon']):
if roi_x < x < roi_x + roi_w and roi_y < y < roi_y + roi_h:
current_region = region current_region = region
current_region['dragging'] = True current_region['dragging'] = True
current_region['offset_x'] = x - roi_x current_region['offset_x'] = x
current_region['offset_y'] = y - roi_y current_region['offset_y'] = y
# Mouse move event # Mouse move event
elif event == cv2.EVENT_MOUSEMOVE: elif event == cv2.EVENT_MOUSEMOVE:
if current_region is not None and current_region['dragging']: if current_region is not None and current_region['dragging']:
current_region['roi'] = (x - current_region['offset_x'], y - current_region['offset_y'], dx = x - current_region['offset_x']
current_region['roi'][2], current_region['roi'][3]) dy = y - current_region['offset_y']
current_region['polygon'] = Polygon([
(p[0] + dx, p[1] + dy) for p in current_region['polygon'].exterior.coords])
current_region['offset_x'] = x
current_region['offset_y'] = y
# Mouse left button up event # Mouse left button up event
elif event == cv2.EVENT_LBUTTONUP: elif event == cv2.EVENT_LBUTTONUP:
@ -60,26 +66,33 @@ def mouse_callback(event, x, y, flags, param):
current_region['dragging'] = False current_region['dragging'] = False
def run(weights='yolov8n.pt', def run(
source='test.mp4', weights='yolov8n.pt',
view_img=False, source=None,
save_img=False, device='cpu',
exist_ok=False, view_img=False,
line_thickness=2, save_img=False,
region_thickness=2): exist_ok=False,
line_thickness=2,
track_thickness=2,
region_thickness=2,
):
""" """
Run Region counting on a video using YOLOv8 and ByteTrack. Run Region counting on a video using YOLOv8 and ByteTrack.
Supports movable region for real time counting inside specific area. Supports movable region for real time counting inside specific area.
Supports multiple regions counting. Supports multiple regions counting.
Regions can be Polygons or rectangle in shape
Args: Args:
weights (str): Model weights path. weights (str): Model weights path.
source (str): Video file path. source (str): Video file path.
device (str): processing device cpu, 0, 1
view_img (bool): Show results. view_img (bool): Show results.
save_img (bool): Save results. save_img (bool): Save results.
exist_ok (bool): Overwrite existing files. exist_ok (bool): Overwrite existing files.
line_thickness (int): Bounding box thickness. line_thickness (int): Bounding box thickness.
track_thickness (int): Tracking line thickness
region_thickness (int): Region thickness. region_thickness (int): Region thickness.
""" """
vid_frame_count = 0 vid_frame_count = 0
@ -90,6 +103,7 @@ def run(weights='yolov8n.pt',
# Setup Model # Setup Model
model = YOLO(f'{weights}') model = YOLO(f'{weights}')
model.to('cuda') if device == '0' else model.to('cpu')
# Video setup # Video setup
videocapture = cv2.VideoCapture(source) videocapture = cv2.VideoCapture(source)
@ -122,40 +136,43 @@ def run(weights='yolov8n.pt',
label = str(names[cls]) label = str(names[cls])
xyxy = (x - w / 2), (y - h / 2), (x + w / 2), (y + h / 2) xyxy = (x - w / 2), (y - h / 2), (x + w / 2), (y + h / 2)
# Bounding box # Bounding box plot
bbox_color = colors(cls, True) bbox_color = colors(cls, True)
annotator.box_label(xyxy, label, color=bbox_color) annotator.box_label(xyxy, label, color=bbox_color)
# Tracking Lines # Tracking Lines plot
track = track_history[track_id] track = track_history[track_id]
track.append((float(x), float(y))) track.append((float(x), float(y)))
if len(track) > 30: if len(track) > 30:
track.pop(0) track.pop(0)
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(frame, [points], isClosed=False, color=bbox_color, thickness=line_thickness) cv2.polylines(frame, [points], isClosed=False, color=bbox_color, thickness=track_thickness)
# Check If detection inside region # Check if detection inside region
for region in counting_regions: for region in counting_regions:
if is_inside_roi(box, region['roi']): if is_inside_polygon((x, y), region['polygon']):
region['counts'] += 1 region['counts'] += 1
# Draw region boxes # Draw regions (Polygons/Rectangles)
for region in counting_regions: for region in counting_regions:
region_label = str(region['counts']) region_label = str(region['counts'])
roi_x, roi_y, roi_w, roi_h = region['roi']
region_color = region['region_color'] region_color = region['region_color']
center_x = roi_x + roi_w // 2 region_text_color = region['text_color']
center_y = roi_y + roi_h // 2
text_margin = 15
# Region plotting polygon_coords = np.array(region['polygon'].exterior.coords, dtype=np.int32)
cv2.rectangle(frame, (roi_x, roi_y), (roi_x + roi_w, roi_y + roi_h), region_color, region_thickness) centroid_x, centroid_y = int(region['polygon'].centroid.x), int(region['polygon'].centroid.y)
t_size, _ = cv2.getTextSize(region_label, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1.0, thickness=line_thickness)
text_x = center_x - t_size[0] // 2 - text_margin text_size, _ = cv2.getTextSize(region_label,
text_y = center_y + t_size[1] // 2 + text_margin cv2.FONT_HERSHEY_SIMPLEX,
cv2.rectangle(frame, (text_x - text_margin, text_y - t_size[1] - text_margin), fontScale=0.7,
(text_x + t_size[0] + text_margin, text_y + text_margin), region_color, -1) thickness=line_thickness)
cv2.putText(frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), line_thickness) text_x = centroid_x - text_size[0] // 2
text_y = centroid_y + text_size[1] // 2
cv2.rectangle(frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5),
region_color, -1)
cv2.putText(frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, region_text_color,
line_thickness)
cv2.polylines(frame, [polygon_coords], isClosed=True, color=region_color, thickness=region_thickness)
if view_img: if view_img:
if vid_frame_count == 1: if vid_frame_count == 1:
@ -182,12 +199,15 @@ def parse_opt():
"""Parse command line arguments.""" """Parse command line arguments."""
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov8n.pt', help='initial weights path') parser.add_argument('--weights', type=str, default='yolov8n.pt', help='initial weights path')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--source', type=str, required=True, help='video file path') parser.add_argument('--source', type=str, required=True, help='video file path')
parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-img', action='store_true', help='save results') parser.add_argument('--save-img', action='store_true', help='save results')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', type=int, default=2, help='bounding box thickness') parser.add_argument('--line-thickness', type=int, default=2, help='bounding box thickness')
parser.add_argument('--track-thickness', type=int, default=2, help='Tracking line thickness')
parser.add_argument('--region-thickness', type=int, default=4, help='Region thickness') parser.add_argument('--region-thickness', type=int, default=4, help='Region thickness')
return parser.parse_args() return parser.parse_args()

View File

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.182' __version__ = '8.0.183'
from ultralytics.models import RTDETR, SAM, YOLO from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM from ultralytics.models.fastsam import FastSAM

View File

@ -493,9 +493,15 @@ def collect_system_info():
f"{'CPU':<20}{get_cpu_info()}\n" f"{'CPU':<20}{get_cpu_info()}\n"
f"{'CUDA':<20}{torch.version.cuda if torch and torch.cuda.is_available() else None}\n") f"{'CUDA':<20}{torch.version.cuda if torch and torch.cuda.is_available() else None}\n")
for r in parse_requirements(): if (ROOT.parent / 'requirements.txt').exists(): # pip install
requirements = parse_requirements()
else: # git install
from pkg_resources import get_distribution
requirements = get_distribution('ultralytics').requires()
for r in requirements:
current = version(r.name) current = version(r.name)
is_met = '' if check_version(current, r.specifier) else '' is_met = '' if check_version(current, str(r.specifier)) else ''
LOGGER.info(f'{r.name:<20}{is_met}{current}{r.specifier}') LOGGER.info(f'{r.name:<20}{is_met}{current}{r.specifier}')

View File

@ -124,7 +124,7 @@ def run_ray_tune(model,
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
# Create the Ray Tune hyperparameter search tuner # Create the Ray Tune hyperparameter search tuner
tune_dir = get_save_dir(DEFAULT_CFG, name='tune') tune_dir = get_save_dir(DEFAULT_CFG, name='tune').resolve() # must be absolute dir
tune_dir.mkdir(parents=True, exist_ok=True) tune_dir.mkdir(parents=True, exist_ok=True)
tuner = tune.Tuner(trainable_with_resources, tuner = tune.Tuner(trainable_with_resources,
param_space=space, param_space=space,