mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:07:03 +08:00
Make YOLO a module (#111)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
0303ced8ab
commit
34829a6b29
18
README.md
18
README.md
@ -16,19 +16,21 @@ pip install -e .
|
||||
### 1. CLI
|
||||
To simply use the latest Ultralytics YOLO models
|
||||
```bash
|
||||
yolo task=detect mode=train model=s.yaml ...
|
||||
classify infer s-cls.yaml
|
||||
segment val s-seg.yaml
|
||||
yolo task=detect mode=train model=yolov8n.yaml ...
|
||||
classify predict yolov8n-cls.yaml
|
||||
segment val yolov8n-seg.yaml
|
||||
```
|
||||
### 2. Python SDK
|
||||
To use pythonic interface of Ultralytics YOLO model
|
||||
```python
|
||||
import ultralytics
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.new("s-seg.yaml") # automatically detects task type
|
||||
model.load("s-seg.pt") # load checkpoint
|
||||
model.train(data="coco128-segments", epochs=1, lr0=0.01, ...)
|
||||
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
|
||||
model = YOLO.load('yolov8n.pt') # load a pretrained model (recommended for best training results)
|
||||
|
||||
results = model.train(data='coco128.yaml', epochs=100, imgsz=640, ...)
|
||||
results = model.val()
|
||||
results = model.predict(source='bus.jpg')
|
||||
success = model.export(format='onnx')
|
||||
```
|
||||
If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer]() Guide on our docs.
|
||||
|
@ -3,45 +3,49 @@ import torch
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
def test_model_init():
|
||||
model = YOLO.new("yolov8n.yaml")
|
||||
model.info()
|
||||
try:
|
||||
YOLO()
|
||||
except Exception:
|
||||
print("Successfully caught constructor assert!")
|
||||
raise Exception("constructor error didn't occur")
|
||||
|
||||
|
||||
def test_model_forward():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model = YOLO.new("yolov8n.yaml")
|
||||
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
|
||||
model.forward(img)
|
||||
model(img)
|
||||
|
||||
|
||||
def test_model_info():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model = YOLO.new("yolov8n.yaml")
|
||||
model.info()
|
||||
model.load("best.pt")
|
||||
model = model.load("best.pt")
|
||||
model.info(verbose=True)
|
||||
|
||||
|
||||
def test_model_fuse():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model = YOLO.new("yolov8n.yaml")
|
||||
model.fuse()
|
||||
model.load("best.pt")
|
||||
model.fuse()
|
||||
|
||||
|
||||
def test_visualize_preds():
|
||||
model = YOLO()
|
||||
model.load("best.pt")
|
||||
model = YOLO.load("best.pt")
|
||||
model.predict(source="ultralytics/assets")
|
||||
|
||||
|
||||
def test_val():
|
||||
model = YOLO()
|
||||
model.load("best.pt")
|
||||
model = YOLO.load("best.pt")
|
||||
model.val(data="coco128.yaml", imgsz=32)
|
||||
|
||||
|
||||
def test_model_resume():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model = YOLO.new("yolov8n.yaml")
|
||||
model.train(epochs=1, imgsz=32, data="coco128.yaml")
|
||||
try:
|
||||
model.resume(task="detect")
|
||||
@ -50,10 +54,9 @@ def test_model_resume():
|
||||
|
||||
|
||||
def test_model_train_pretrained():
|
||||
model = YOLO()
|
||||
model.load("best.pt")
|
||||
model = YOLO.load("best.pt")
|
||||
model.train(data="coco128.yaml", epochs=1, imgsz=32)
|
||||
model.new("yolov8n.yaml")
|
||||
model = model.new("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=1, imgsz=32)
|
||||
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
|
||||
model(img)
|
||||
|
@ -5,7 +5,7 @@ from ultralytics import yolo # noqa required for python usage
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||
# from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils import HELP_MSG, LOGGER
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
@ -28,12 +28,16 @@ class YOLO:
|
||||
"""
|
||||
Python interface which emulates a model-like behaviour by wrapping trainers.
|
||||
"""
|
||||
__init_key = object()
|
||||
|
||||
def __init__(self, type="v8") -> None:
|
||||
def __init__(self, init_key=None, type="v8") -> None:
|
||||
"""
|
||||
Args:
|
||||
type (str): Type/version of models to use
|
||||
"""
|
||||
if init_key != YOLO.__init_key:
|
||||
raise Exception(HELP_MSG)
|
||||
|
||||
self.type = type
|
||||
self.ModelClass = None
|
||||
self.TrainerClass = None
|
||||
@ -44,8 +48,10 @@ class YOLO:
|
||||
self.task = None
|
||||
self.ckpt = None
|
||||
self.overrides = {}
|
||||
self.init_disabled = False
|
||||
|
||||
def new(self, cfg: str):
|
||||
@classmethod
|
||||
def new(cls, cfg: str):
|
||||
"""
|
||||
Initializes a new model and infers the task type from the model definitions
|
||||
|
||||
@ -55,12 +61,15 @@ class YOLO:
|
||||
cfg = check_yaml(cfg) # check YAML
|
||||
with open(cfg, encoding='ascii', errors='ignore') as f:
|
||||
cfg = yaml.safe_load(f) # model dict
|
||||
self.task = self._guess_task_from_head(cfg["head"][-1][-2])
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
||||
self.task)
|
||||
self.model = self.ModelClass(cfg) # initialize
|
||||
obj = cls(init_key=cls.__init_key)
|
||||
obj.task = obj._guess_task_from_head(cfg["head"][-1][-2])
|
||||
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(obj.task)
|
||||
obj.model = obj.ModelClass(cfg) # initialize
|
||||
|
||||
def load(self, weights: str):
|
||||
return obj
|
||||
|
||||
@classmethod
|
||||
def load(cls, weights: str):
|
||||
"""
|
||||
Initializes a new model and infers the task type from the model head
|
||||
|
||||
@ -68,15 +77,18 @@ class YOLO:
|
||||
weights (str): model checkpoint to be loaded
|
||||
|
||||
"""
|
||||
self.ckpt = torch.load(weights, map_location="cpu")
|
||||
self.task = self.ckpt["train_args"]["task"]
|
||||
self.overrides = dict(self.ckpt["train_args"])
|
||||
self.overrides["device"] = '' # reset device
|
||||
obj = cls(init_key=cls.__init_key)
|
||||
obj.ckpt = torch.load(weights, map_location="cpu")
|
||||
obj.task = obj.ckpt["train_args"]["task"]
|
||||
obj.overrides = dict(obj.ckpt["train_args"])
|
||||
obj.overrides["device"] = '' # reset device
|
||||
LOGGER.info("Device has been reset to ''")
|
||||
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
||||
task=self.task)
|
||||
self.model = attempt_load_weights(weights)
|
||||
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(
|
||||
task=obj.task)
|
||||
obj.model = attempt_load_weights(weights)
|
||||
|
||||
return obj
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
|
@ -21,6 +21,32 @@ FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
||||
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
||||
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
|
||||
LOGGING_NAME = 'yolov5'
|
||||
HELP_MSG = \
|
||||
"""
|
||||
Please refer to below Usage examples for help running YOLOv8
|
||||
For help visit Ultralytics Community at https://community.ultralytics.com/
|
||||
Submit bug reports to https//github.com/ultralytics/ultralytics
|
||||
|
||||
Install:
|
||||
pip install ultralytics
|
||||
|
||||
Python usage:
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
|
||||
model = YOLO.load('yolov8n.pt') # load a pretrained model (recommended for best training results)
|
||||
results = model.train(data='coco128.yaml')
|
||||
results = model.val()
|
||||
results = model.predict(source='bus.jpg')
|
||||
success = model.export(format='onnx')
|
||||
|
||||
CLI usage:
|
||||
yolo task=detect mode=train model=yolov8n.yaml ...
|
||||
classify predict yolov8n-cls.yaml
|
||||
segment val yolov8n-seg.yaml
|
||||
|
||||
For all arguments see https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/utils/configs/default.yaml
|
||||
"""
|
||||
|
||||
# Settings
|
||||
# torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||
|
Loading…
x
Reference in New Issue
Block a user