mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Fix save_json(predn, batch)
(#105)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
8b6466f731
commit
38d6df55cb
@ -109,9 +109,6 @@ class BaseValidator:
|
||||
self.plot_val_samples(batch, batch_i)
|
||||
self.plot_predictions(batch, preds, batch_i)
|
||||
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(preds, batch)
|
||||
|
||||
stats = self.get_stats()
|
||||
self.check_stats(stats)
|
||||
self.print_results()
|
||||
@ -126,8 +123,7 @@ class BaseValidator:
|
||||
with open(str(self.save_dir / "predictions.json"), 'w') as f:
|
||||
self.logger.info(f"Saving {f.name}...")
|
||||
json.dump(self.jdict, f) # flatten and save
|
||||
|
||||
stats = self.eval_json(stats)
|
||||
stats = self.eval_json(stats) # update stats
|
||||
return stats
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
|
@ -71,7 +71,7 @@ class DetectionValidator(BaseValidator):
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
# Metrics
|
||||
for si, (pred) in enumerate(preds):
|
||||
for si, pred in enumerate(preds):
|
||||
labels = self.targets[self.targets[:, 0] == si, 1:]
|
||||
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch["ori_shape"][si]
|
||||
@ -103,11 +103,11 @@ class DetectionValidator(BaseValidator):
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
|
||||
|
||||
# TODO: Save/log
|
||||
'''
|
||||
if self.args.save_txt:
|
||||
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
'''
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch["im_file"][si])
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
def get_stats(self):
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
@ -197,18 +197,17 @@ class DetectionValidator(BaseValidator):
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
|
||||
def pred_to_json(self, preds, batch):
|
||||
for i, f in enumerate(batch["im_file"]):
|
||||
stem = Path(f).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(preds[i][:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(preds[i].tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5)})
|
||||
def pred_to_json(self, predn, filename):
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5)})
|
||||
|
||||
def eval_json(self, stats):
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
|
Loading…
x
Reference in New Issue
Block a user