Fixed PGT by including it in the loss function

This commit is contained in:
nielseni6 2024-10-21 12:20:24 -04:00
parent 38fa59edf2
commit 3a449d5a6c
5 changed files with 179 additions and 46 deletions

View File

@ -15,7 +15,7 @@ def main(args):
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10n.pt', task='segment') model = YOLOv10('yolov10n.pt', task='segment')
args = dict(model='yolov10n.pt', data='coco.yaml', args = dict(model='yolov10n.pt', data='coco128-seg.yaml',
epochs=args.epochs, batch=args.batch_size, epochs=args.epochs, batch=args.batch_size,
# cfg = 'pgt_train.yaml', # This can be edited for full control of the training process # cfg = 'pgt_train.yaml', # This can be edited for full control of the training process
) )
@ -37,7 +37,7 @@ def main(args):
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.') parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.')
parser.add_argument('--device', type=str, default='0', help='CUDA device number') parser.add_argument('--device', type=str, default='0', help='CUDA device number')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size for training') parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training') parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
args = parser.parse_args() args = parser.parse_args()

View File

@ -0,0 +1,127 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
val_period: 1 # (int) Validation every x epochs
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multiscale during training
# Segmentation
overlap_mask: True # (bool) masks should overlap during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots and images during train/val
# Predict settings -----------------------------------------------------------------------------------------------------
source: # (str, optional) source directory for images or videos
vid_stride: 1 # (int) video frame-rate stride
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
embed: # (list[int], optional) return feature vectors/embeddings from given layers
# Visualize settings ---------------------------------------------------------------------------------------------------
show: False # (bool) show predicted images and videos if environment allows
save_frames: False # (bool) save predicted individual video frames
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show prediction labels, i.e. 'person'
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True # (bool) show prediction boxes
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False # (bool) ONNX: simplify model using `onnxslim`
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
label_smoothing: 0.0 # (float) label smoothing (fraction)
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
bgr: 0.0 # (float) image channel BGR (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.0 # (float) segment copy-paste (probability)
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # (str, optional) for overriding defaults.yaml
# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

View File

@ -384,7 +384,9 @@ class PGTTrainer:
# Forward # Forward
with torch.cuda.amp.autocast(self.amp): with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch) batch = self.preprocess_batch(batch)
(self.loss, self.loss_items), images = self.model(batch, return_images=True) batch['img'] = batch['img'].requires_grad_(True)
self.loss, self.loss_items = self.model(batch)
# (self.loss, self.loss_items), images = self.model(batch, return_images=True)
# smask = get_dist_reg(images, batch['masks']) # smask = get_dist_reg(images, batch['masks'])

View File

@ -175,12 +175,14 @@ class PGTValidator:
# Inference # Inference
with dt[1]: with dt[1]:
model.zero_grad()
preds = model(batch["img"].requires_grad_(True), augment=augment) preds = model(batch["img"].requires_grad_(True), augment=augment)
# Loss # Loss
with dt[2]: with dt[2]:
if self.training: if self.training:
self.loss += model.loss(batch, preds)[1] self.loss += model.loss(batch, preds)[1]
model.zero_grad()
# Postprocess # Postprocess
with dt[3]: with dt[3]:

View File

@ -731,7 +731,7 @@ class v10PGTDetectLoss:
self.one2many = v8DetectionLoss(model, tal_topk=10) self.one2many = v8DetectionLoss(model, tal_topk=10)
self.one2one = v8DetectionLoss(model, tal_topk=1) self.one2one = v8DetectionLoss(model, tal_topk=1)
def __call__(self, preds, batch): def __call__(self, preds, batch, return_plaus=True):
batch['img'] = batch['img'].requires_grad_(True) batch['img'] = batch['img'].requires_grad_(True)
one2many = preds["one2many"] one2many = preds["one2many"]
loss_one2many = self.one2many(one2many, batch) loss_one2many = self.one2many(one2many, batch)
@ -739,7 +739,7 @@ class v10PGTDetectLoss:
loss_one2one = self.one2one(one2one, batch) loss_one2one = self.one2one(one2one, batch)
loss = loss_one2many[0] + loss_one2one[0] loss = loss_one2many[0] + loss_one2one[0]
if return_plaus:
smask = get_dist_reg(batch['img'], batch['masks']) smask = get_dist_reg(batch['img'], batch['masks'])
grad = torch.autograd.grad(loss, batch['img'], retain_graph=True)[0] grad = torch.autograd.grad(loss, batch['img'], retain_graph=True)[0]
@ -751,4 +751,6 @@ class v10PGTDetectLoss:
loss += plaus_loss loss += plaus_loss
return loss, torch.cat((loss_one2many[1], loss_one2one[1], plaus_loss.unsqueeze(0))) return loss, torch.cat((loss_one2many[1], loss_one2one[1], plaus_loss.unsqueeze(0)))
else:
return loss, torch.cat((loss_one2many[1], loss_one2one[1]))