mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-11-04 08:56:11 +08:00 
			
		
		
		
	Fixed PGT by including it in the loss function
This commit is contained in:
		
							parent
							
								
									38fa59edf2
								
							
						
					
					
						commit
						3a449d5a6c
					
				@ -6,42 +6,42 @@ import argparse
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(args):
 | 
			
		||||
  # model = YOLOv10()
 | 
			
		||||
    # model = YOLOv10()
 | 
			
		||||
 | 
			
		||||
  # If you want to finetune the model with pretrained weights, you could load the 
 | 
			
		||||
  # pretrained weights like below
 | 
			
		||||
  # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
 | 
			
		||||
  # or
 | 
			
		||||
  # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
 | 
			
		||||
  model = YOLOv10('yolov10n.pt', task='segment')
 | 
			
		||||
    # If you want to finetune the model with pretrained weights, you could load the 
 | 
			
		||||
    # pretrained weights like below
 | 
			
		||||
    # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
 | 
			
		||||
    # or
 | 
			
		||||
    # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
 | 
			
		||||
    model = YOLOv10('yolov10n.pt', task='segment')
 | 
			
		||||
 | 
			
		||||
  args = dict(model='yolov10n.pt', data='coco.yaml', 
 | 
			
		||||
              epochs=args.epochs, batch=args.batch_size,
 | 
			
		||||
              # cfg = 'pgt_train.yaml', # This can be edited for full control of the training process
 | 
			
		||||
              )
 | 
			
		||||
  trainer = PGTSegmentationTrainer(overrides=args)
 | 
			
		||||
  trainer.train(
 | 
			
		||||
        # debug=True, 
 | 
			
		||||
        #   args = dict(pgt_coeff=0.1), # Should add later to config
 | 
			
		||||
          )
 | 
			
		||||
    args = dict(model='yolov10n.pt', data='coco128-seg.yaml', 
 | 
			
		||||
                epochs=args.epochs, batch=args.batch_size,
 | 
			
		||||
                # cfg = 'pgt_train.yaml', # This can be edited for full control of the training process
 | 
			
		||||
                )
 | 
			
		||||
    trainer = PGTSegmentationTrainer(overrides=args)
 | 
			
		||||
    trainer.train(
 | 
			
		||||
                # debug=True, 
 | 
			
		||||
                # args = dict(pgt_coeff=0.1), # Should add later to config
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
  # Save the trained model
 | 
			
		||||
  model.save('yolov10_coco_trained.pt')
 | 
			
		||||
    # Save the trained model
 | 
			
		||||
    model.save('yolov10_coco_trained.pt')
 | 
			
		||||
 | 
			
		||||
  # Evaluate the model on the validation set
 | 
			
		||||
  results = model.val(data='coco.yaml')
 | 
			
		||||
    # Evaluate the model on the validation set
 | 
			
		||||
    results = model.val(data='coco.yaml')
 | 
			
		||||
 | 
			
		||||
  # Print the evaluation results
 | 
			
		||||
  print(results)
 | 
			
		||||
    # Print the evaluation results
 | 
			
		||||
    print(results)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
  parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.')
 | 
			
		||||
  parser.add_argument('--device', type=str, default='0', help='CUDA device number')
 | 
			
		||||
  parser.add_argument('--batch_size', type=int, default=128, help='Batch size for training')
 | 
			
		||||
  parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
 | 
			
		||||
  args = parser.parse_args()
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.')
 | 
			
		||||
    parser.add_argument('--device', type=str, default='0', help='CUDA device number')
 | 
			
		||||
    parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training')
 | 
			
		||||
    parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
  # Set CUDA device (only needed for multi-gpu machines)
 | 
			
		||||
  os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
 | 
			
		||||
  os.environ["CUDA_VISIBLE_DEVICES"] = args.device
 | 
			
		||||
  main(args)
 | 
			
		||||
    # Set CUDA device (only needed for multi-gpu machines)
 | 
			
		||||
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
 | 
			
		||||
    os.environ["CUDA_VISIBLE_DEVICES"] = args.device
 | 
			
		||||
    main(args)
 | 
			
		||||
							
								
								
									
										127
									
								
								ultralytics/cfg/pgt_train.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										127
									
								
								ultralytics/cfg/pgt_train.yaml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,127 @@
 | 
			
		||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
 | 
			
		||||
# Default training settings and hyperparameters for medium-augmentation COCO training
 | 
			
		||||
 | 
			
		||||
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
 | 
			
		||||
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
 | 
			
		||||
 | 
			
		||||
# Train settings -------------------------------------------------------------------------------------------------------
 | 
			
		||||
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
 | 
			
		||||
data: # (str, optional) path to data file, i.e. coco128.yaml
 | 
			
		||||
epochs: 100 # (int) number of epochs to train for
 | 
			
		||||
time: # (float, optional) number of hours to train for, overrides epochs if supplied
 | 
			
		||||
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
 | 
			
		||||
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
 | 
			
		||||
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
 | 
			
		||||
save: True # (bool) save train checkpoints and predict results
 | 
			
		||||
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
 | 
			
		||||
val_period: 1 # (int) Validation every x epochs
 | 
			
		||||
cache: False # (bool) True/ram, disk or False. Use cache for data loading
 | 
			
		||||
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
 | 
			
		||||
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
 | 
			
		||||
project: # (str, optional) project name
 | 
			
		||||
name: # (str, optional) experiment name, results saved to 'project/name' directory
 | 
			
		||||
exist_ok: False # (bool) whether to overwrite existing experiment
 | 
			
		||||
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
 | 
			
		||||
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
 | 
			
		||||
verbose: True # (bool) whether to print verbose output
 | 
			
		||||
seed: 0 # (int) random seed for reproducibility
 | 
			
		||||
deterministic: True # (bool) whether to enable deterministic mode
 | 
			
		||||
single_cls: False # (bool) train multi-class data as single-class
 | 
			
		||||
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
 | 
			
		||||
cos_lr: False # (bool) use cosine learning rate scheduler
 | 
			
		||||
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
 | 
			
		||||
resume: False # (bool) resume training from last checkpoint
 | 
			
		||||
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
 | 
			
		||||
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
 | 
			
		||||
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
 | 
			
		||||
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
 | 
			
		||||
multi_scale: False # (bool) Whether to use multiscale during training
 | 
			
		||||
# Segmentation
 | 
			
		||||
overlap_mask: True # (bool) masks should overlap during training (segment train only)
 | 
			
		||||
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
 | 
			
		||||
# Classification
 | 
			
		||||
dropout: 0.0 # (float) use dropout regularization (classify train only)
 | 
			
		||||
 | 
			
		||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
 | 
			
		||||
val: True # (bool) validate/test during training
 | 
			
		||||
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
 | 
			
		||||
save_json: False # (bool) save results to JSON file
 | 
			
		||||
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
 | 
			
		||||
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
 | 
			
		||||
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
 | 
			
		||||
max_det: 300 # (int) maximum number of detections per image
 | 
			
		||||
half: False # (bool) use half precision (FP16)
 | 
			
		||||
dnn: False # (bool) use OpenCV DNN for ONNX inference
 | 
			
		||||
plots: True # (bool) save plots and images during train/val
 | 
			
		||||
 | 
			
		||||
# Predict settings -----------------------------------------------------------------------------------------------------
 | 
			
		||||
source: # (str, optional) source directory for images or videos
 | 
			
		||||
vid_stride: 1 # (int) video frame-rate stride
 | 
			
		||||
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
 | 
			
		||||
visualize: False # (bool) visualize model features
 | 
			
		||||
augment: False # (bool) apply image augmentation to prediction sources
 | 
			
		||||
agnostic_nms: False # (bool) class-agnostic NMS
 | 
			
		||||
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
 | 
			
		||||
retina_masks: False # (bool) use high-resolution segmentation masks
 | 
			
		||||
embed: # (list[int], optional) return feature vectors/embeddings from given layers
 | 
			
		||||
 | 
			
		||||
# Visualize settings ---------------------------------------------------------------------------------------------------
 | 
			
		||||
show: False # (bool) show predicted images and videos if environment allows
 | 
			
		||||
save_frames: False # (bool) save predicted individual video frames
 | 
			
		||||
save_txt: False # (bool) save results as .txt file
 | 
			
		||||
save_conf: False # (bool) save results with confidence scores
 | 
			
		||||
save_crop: False # (bool) save cropped images with results
 | 
			
		||||
show_labels: True # (bool) show prediction labels, i.e. 'person'
 | 
			
		||||
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
 | 
			
		||||
show_boxes: True # (bool) show prediction boxes
 | 
			
		||||
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
 | 
			
		||||
 | 
			
		||||
# Export settings ------------------------------------------------------------------------------------------------------
 | 
			
		||||
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
 | 
			
		||||
keras: False # (bool) use Kera=s
 | 
			
		||||
optimize: False # (bool) TorchScript: optimize for mobile
 | 
			
		||||
int8: False # (bool) CoreML/TF INT8 quantization
 | 
			
		||||
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
 | 
			
		||||
simplify: False # (bool) ONNX: simplify model using `onnxslim`
 | 
			
		||||
opset: # (int, optional) ONNX: opset version
 | 
			
		||||
workspace: 4 # (int) TensorRT: workspace size (GB)
 | 
			
		||||
nms: False # (bool) CoreML: add NMS
 | 
			
		||||
 | 
			
		||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
 | 
			
		||||
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
 | 
			
		||||
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
 | 
			
		||||
momentum: 0.937 # (float) SGD momentum/Adam beta1
 | 
			
		||||
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
 | 
			
		||||
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
 | 
			
		||||
warmup_momentum: 0.8 # (float) warmup initial momentum
 | 
			
		||||
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
 | 
			
		||||
box: 7.5 # (float) box loss gain
 | 
			
		||||
cls: 0.5 # (float) cls loss gain (scale with pixels)
 | 
			
		||||
dfl: 1.5 # (float) dfl loss gain
 | 
			
		||||
pose: 12.0 # (float) pose loss gain
 | 
			
		||||
kobj: 1.0 # (float) keypoint obj loss gain
 | 
			
		||||
label_smoothing: 0.0 # (float) label smoothing (fraction)
 | 
			
		||||
nbs: 64 # (int) nominal batch size
 | 
			
		||||
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
 | 
			
		||||
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
 | 
			
		||||
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
 | 
			
		||||
degrees: 0.0 # (float) image rotation (+/- deg)
 | 
			
		||||
translate: 0.1 # (float) image translation (+/- fraction)
 | 
			
		||||
scale: 0.5 # (float) image scale (+/- gain)
 | 
			
		||||
shear: 0.0 # (float) image shear (+/- deg)
 | 
			
		||||
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
 | 
			
		||||
flipud: 0.0 # (float) image flip up-down (probability)
 | 
			
		||||
fliplr: 0.5 # (float) image flip left-right (probability)
 | 
			
		||||
bgr: 0.0 # (float) image channel BGR (probability)
 | 
			
		||||
mosaic: 1.0 # (float) image mosaic (probability)
 | 
			
		||||
mixup: 0.0 # (float) image mixup (probability)
 | 
			
		||||
copy_paste: 0.0 # (float) segment copy-paste (probability)
 | 
			
		||||
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
 | 
			
		||||
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
 | 
			
		||||
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
 | 
			
		||||
 | 
			
		||||
# Custom config.yaml ---------------------------------------------------------------------------------------------------
 | 
			
		||||
cfg: # (str, optional) for overriding defaults.yaml
 | 
			
		||||
 | 
			
		||||
# Tracker settings ------------------------------------------------------------------------------------------------------
 | 
			
		||||
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
 | 
			
		||||
@ -380,11 +380,13 @@ class PGTTrainer:
 | 
			
		||||
                        )
 | 
			
		||||
                        if "momentum" in x:
 | 
			
		||||
                            x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
 | 
			
		||||
 | 
			
		||||
                
 | 
			
		||||
                # Forward
 | 
			
		||||
                with torch.cuda.amp.autocast(self.amp):
 | 
			
		||||
                    batch = self.preprocess_batch(batch)
 | 
			
		||||
                    (self.loss, self.loss_items), images = self.model(batch, return_images=True)
 | 
			
		||||
                    batch['img'] = batch['img'].requires_grad_(True)
 | 
			
		||||
                    self.loss, self.loss_items = self.model(batch)
 | 
			
		||||
                    # (self.loss, self.loss_items), images = self.model(batch, return_images=True)
 | 
			
		||||
 | 
			
		||||
                # smask = get_dist_reg(images, batch['masks'])
 | 
			
		||||
 | 
			
		||||
@ -418,7 +420,7 @@ class PGTTrainer:
 | 
			
		||||
                            x1, y1, x2, y2 = bboxes[idx]
 | 
			
		||||
                            x1, y1, x2, y2 = int(torch.round(x1)), int(torch.round(y1)), int(torch.round(x2)), int(torch.round(y2))
 | 
			
		||||
                            mask[irx, :, y1:y2, x1:x2] = 1.0
 | 
			
		||||
 | 
			
		||||
                    
 | 
			
		||||
                    save_imgs = True
 | 
			
		||||
                    if save_imgs:
 | 
			
		||||
                        # Convert tensors to numpy arrays
 | 
			
		||||
@ -498,7 +500,7 @@ class PGTTrainer:
 | 
			
		||||
                    self.run_callbacks("on_batch_end")
 | 
			
		||||
                    if self.args.plots and ni in self.plot_idx:
 | 
			
		||||
                        self.plot_training_samples(batch, ni)
 | 
			
		||||
 | 
			
		||||
                
 | 
			
		||||
                self.run_callbacks("on_train_batch_end")
 | 
			
		||||
 | 
			
		||||
            self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)}  # for loggers
 | 
			
		||||
 | 
			
		||||
@ -175,12 +175,14 @@ class PGTValidator:
 | 
			
		||||
 | 
			
		||||
            # Inference
 | 
			
		||||
            with dt[1]:
 | 
			
		||||
                model.zero_grad()
 | 
			
		||||
                preds = model(batch["img"].requires_grad_(True), augment=augment)
 | 
			
		||||
 | 
			
		||||
            # Loss
 | 
			
		||||
            with dt[2]:
 | 
			
		||||
                if self.training:
 | 
			
		||||
                    self.loss += model.loss(batch, preds)[1]
 | 
			
		||||
                    model.zero_grad()
 | 
			
		||||
 | 
			
		||||
            # Postprocess
 | 
			
		||||
            with dt[3]:
 | 
			
		||||
 | 
			
		||||
@ -731,7 +731,7 @@ class v10PGTDetectLoss:
 | 
			
		||||
        self.one2many = v8DetectionLoss(model, tal_topk=10)
 | 
			
		||||
        self.one2one = v8DetectionLoss(model, tal_topk=1)
 | 
			
		||||
    
 | 
			
		||||
    def __call__(self, preds, batch):
 | 
			
		||||
    def __call__(self, preds, batch, return_plaus=True):
 | 
			
		||||
        batch['img'] = batch['img'].requires_grad_(True)
 | 
			
		||||
        one2many = preds["one2many"]
 | 
			
		||||
        loss_one2many = self.one2many(one2many, batch)
 | 
			
		||||
@ -739,16 +739,18 @@ class v10PGTDetectLoss:
 | 
			
		||||
        loss_one2one = self.one2one(one2one, batch)
 | 
			
		||||
 | 
			
		||||
        loss = loss_one2many[0] + loss_one2one[0]
 | 
			
		||||
        
 | 
			
		||||
        smask = get_dist_reg(batch['img'], batch['masks'])
 | 
			
		||||
        if return_plaus:
 | 
			
		||||
            smask = get_dist_reg(batch['img'], batch['masks'])
 | 
			
		||||
 | 
			
		||||
        grad = torch.autograd.grad(loss, batch['img'], retain_graph=True)[0]
 | 
			
		||||
        grad = torch.abs(grad)
 | 
			
		||||
            grad = torch.autograd.grad(loss, batch['img'], retain_graph=True)[0]
 | 
			
		||||
            grad = torch.abs(grad)
 | 
			
		||||
 | 
			
		||||
        pgt_coeff = 3.0
 | 
			
		||||
        plaus_loss = plaus_loss_fn(grad, smask, pgt_coeff)
 | 
			
		||||
        # self.loss_items = torch.cat((self.loss_items, plaus_loss.unsqueeze(0)))
 | 
			
		||||
        loss += plaus_loss
 | 
			
		||||
        
 | 
			
		||||
        return loss, torch.cat((loss_one2many[1], loss_one2one[1], plaus_loss.unsqueeze(0)))
 | 
			
		||||
            pgt_coeff = 3.0
 | 
			
		||||
            plaus_loss = plaus_loss_fn(grad, smask, pgt_coeff)
 | 
			
		||||
            # self.loss_items = torch.cat((self.loss_items, plaus_loss.unsqueeze(0)))
 | 
			
		||||
            loss += plaus_loss
 | 
			
		||||
            
 | 
			
		||||
            return loss, torch.cat((loss_one2many[1], loss_one2one[1], plaus_loss.unsqueeze(0)))
 | 
			
		||||
        else:
 | 
			
		||||
            return loss, torch.cat((loss_one2many[1], loss_one2one[1]))
 | 
			
		||||
    
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user