mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Add Quickstart Docs YouTube video (#5733)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
cedce60f8c
commit
437b4306d2
@ -118,6 +118,17 @@ Ultralytics provides various installation methods including pip, conda, and Dock
|
|||||||
|
|
||||||
See the `ultralytics` [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) file for a list of dependencies. Note that all examples above install all required dependencies.
|
See the `ultralytics` [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) file for a list of dependencies. Note that all examples above install all required dependencies.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<br>
|
||||||
|
<iframe width="720" height="405" src="https://www.youtube.com/embed/MWq1UxqTClU?si=nHAW-lYDzrz68jR0"
|
||||||
|
title="YouTube video player" frameborder="0"
|
||||||
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
|
allowfullscreen>
|
||||||
|
</iframe>
|
||||||
|
<br>
|
||||||
|
<strong>Watch:</strong> Ultralytics YOLO for Object Detection: Quickstart Guide for Installation and Setup.
|
||||||
|
</p>
|
||||||
|
|
||||||
!!! tip "Tip"
|
!!! tip "Tip"
|
||||||
|
|
||||||
PyTorch requirements vary by operating system and CUDA requirements, so it's recommended to install PyTorch first following instructions at [https://pytorch.org/get-started/locally](https://pytorch.org/get-started/locally).
|
PyTorch requirements vary by operating system and CUDA requirements, so it's recommended to install PyTorch first following instructions at [https://pytorch.org/get-started/locally](https://pytorch.org/get-started/locally).
|
||||||
|
@ -61,15 +61,14 @@ class SAM(Model):
|
|||||||
Performs segmentation prediction on the given image or video source.
|
Performs segmentation prediction on the given image or video source.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
source: Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
||||||
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
||||||
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
||||||
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
||||||
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
||||||
**kwargs: Additional keyword arguments.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The segmentation masks.
|
(list): The model predictions.
|
||||||
"""
|
"""
|
||||||
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
||||||
kwargs.update(overrides)
|
kwargs.update(overrides)
|
||||||
@ -81,15 +80,14 @@ class SAM(Model):
|
|||||||
Alias for the 'predict' method.
|
Alias for the 'predict' method.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
source: Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
||||||
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
||||||
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
||||||
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
||||||
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
||||||
**kwargs: Additional keyword arguments.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The segmentation masks.
|
(list): The model predictions.
|
||||||
"""
|
"""
|
||||||
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
||||||
|
|
||||||
@ -112,6 +110,6 @@ class SAM(Model):
|
|||||||
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
|
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
dict: A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
|
(dict): A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
|
||||||
"""
|
"""
|
||||||
return {'segment': {'predictor': Predictor}}
|
return {'segment': {'predictor': Predictor}}
|
||||||
|
@ -77,7 +77,7 @@ class Predictor(BasePredictor):
|
|||||||
im (torch.Tensor | List[np.ndarray]): BCHW tensor format or list of HWC numpy arrays.
|
im (torch.Tensor | List[np.ndarray]): BCHW tensor format or list of HWC numpy arrays.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
torch.Tensor: The preprocessed image tensor.
|
(torch.Tensor): The preprocessed image tensor.
|
||||||
"""
|
"""
|
||||||
if self.im is not None:
|
if self.im is not None:
|
||||||
return self.im
|
return self.im
|
||||||
@ -105,7 +105,7 @@ class Predictor(BasePredictor):
|
|||||||
im (List[np.ndarray]): List containing images in HWC numpy array format.
|
im (List[np.ndarray]): List containing images in HWC numpy array format.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[np.ndarray]: List of transformed images.
|
(List[np.ndarray]): List of transformed images.
|
||||||
"""
|
"""
|
||||||
assert len(im) == 1, 'SAM model does not currently support batched inference'
|
assert len(im) == 1, 'SAM model does not currently support batched inference'
|
||||||
letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
|
letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
|
||||||
@ -126,7 +126,7 @@ class Predictor(BasePredictor):
|
|||||||
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
|
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple: Contains the following three elements.
|
(tuple): Contains the following three elements.
|
||||||
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
|
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
|
||||||
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
||||||
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
||||||
@ -155,7 +155,7 @@ class Predictor(BasePredictor):
|
|||||||
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
|
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple: Contains the following three elements.
|
(tuple): Contains the following three elements.
|
||||||
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
|
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
|
||||||
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
||||||
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
||||||
@ -234,7 +234,7 @@ class Predictor(BasePredictor):
|
|||||||
crop_nms_thresh (float): IoU cutoff for Non-Maximum Suppression (NMS) to remove duplicate masks between crops.
|
crop_nms_thresh (float): IoU cutoff for Non-Maximum Suppression (NMS) to remove duplicate masks between crops.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple: A tuple containing segmented masks, confidence scores, and bounding boxes.
|
(tuple): A tuple containing segmented masks, confidence scores, and bounding boxes.
|
||||||
"""
|
"""
|
||||||
self.segment_all = True
|
self.segment_all = True
|
||||||
ih, iw = im.shape[2:]
|
ih, iw = im.shape[2:]
|
||||||
@ -434,9 +434,9 @@ class Predictor(BasePredictor):
|
|||||||
nms_thresh (float): The IoU threshold for the NMS algorithm. Defaults to 0.7.
|
nms_thresh (float): The IoU threshold for the NMS algorithm. Defaults to 0.7.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
T(uple[torch.Tensor, List[int]]):
|
(tuple([torch.Tensor, List[int]])):
|
||||||
- new_masks (torch.Tensor): The processed masks with small regions removed. Shape is (N, H, W).
|
- new_masks (torch.Tensor): The processed masks with small regions removed. Shape is (N, H, W).
|
||||||
- keep (List[int]): The indices of the remaining masks post-NMS, which can be used to filter the boxes.
|
- keep (List[int]): The indices of the remaining masks post-NMS, which can be used to filter the boxes.
|
||||||
"""
|
"""
|
||||||
if len(masks) == 0:
|
if len(masks) == 0:
|
||||||
return masks
|
return masks
|
||||||
|
Loading…
x
Reference in New Issue
Block a user