mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Use conda install -c conda-forge ultralytics
(#4272)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: MLBoy_DaisukeMajima <rockyshikoku@gmail.com> Co-authored-by: Louis Lac <lac.louis5@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com> Co-authored-by: Simon Lévesque <simlevesque@dismail.de> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
22474e9ad5
commit
48748ded24
@ -6,7 +6,7 @@ keywords: Ultralytics, YOLO, open-source, contribute, pull request, bug report,
|
||||
|
||||
# Contributing to Ultralytics Open-Source YOLO Repositories
|
||||
|
||||
First of all, thank you for your interest in contributing to Ultralytics open-source YOLO repositories! Your contributions will help improve the project and benefit the community. This document provides guidelines and best practices for contributing to Ultralytics YOLO repositories.
|
||||
First of all, thank you for your interest in contributing to Ultralytics open-source YOLO repositories! Your contributions will help improve the project and benefit the community. This document provides guidelines and best practices to get you started.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
|
@ -55,20 +55,21 @@ YOLOv8 can process different types of input sources for inference, as shown in t
|
||||
Use `stream=True` for processing long videos or large datasets to efficiently manage memory. When `stream=False`, the results for all frames or data points are stored in memory, which can quickly add up and cause out-of-memory errors for large inputs. In contrast, `stream=True` utilizes a generator, which only keeps the results of the current frame or data point in memory, significantly reducing memory consumption and preventing out-of-memory issues.
|
||||
|
||||
| Source | Argument | Type | Notes |
|
||||
|-------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|
|
||||
|---------------|--------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|
|
||||
| image | `'image.jpg'` | `str` or `Path` | Single image file. |
|
||||
| URL | `'https://ultralytics.com/images/bus.jpg'` | `str` | URL to an image. |
|
||||
| screenshot | `'screen'` | `str` | Capture a screenshot. |
|
||||
| PIL | `Image.open('im.jpg')` | `PIL.Image` | HWC format with RGB channels. |
|
||||
| OpenCV | `cv2.imread('im.jpg')` | `np.ndarray` of `uint8 (0-255)` | HWC format with BGR channels. |
|
||||
| numpy | `np.zeros((640,1280,3))` | `np.ndarray` of `uint8 (0-255)` | HWC format with BGR channels. |
|
||||
| torch | `torch.zeros(16,3,320,640)` | `torch.Tensor` of `float32 (0.0-1.0)` | BCHW format with RGB channels. |
|
||||
| OpenCV | `cv2.imread('im.jpg')` | `np.ndarray` | HWC format with BGR channels `uint8 (0-255)`. |
|
||||
| numpy | `np.zeros((640,1280,3))` | `np.ndarray` | HWC format with BGR channels `uint8 (0-255)`. |
|
||||
| torch | `torch.zeros(16,3,320,640)` | `torch.Tensor` | BCHW format with RGB channels `float32 (0.0-1.0)`. |
|
||||
| CSV | `'sources.csv'` | `str` or `Path` | CSV file containing paths to images, videos, or directories. |
|
||||
| video ✅ | `'video.mp4'` | `str` or `Path` | Video file in formats like MP4, AVI, etc. |
|
||||
| directory ✅ | `'path/'` | `str` or `Path` | Path to a directory containing images or videos. |
|
||||
| glob ✅ | `'path/*.jpg'` | `str` | Glob pattern to match multiple files. Use the `*` character as a wildcard. |
|
||||
| YouTube ✅ | `'https://youtu.be/Zgi9g1ksQHc'` | `str` | URL to a YouTube video. |
|
||||
| stream ✅ | `'rtsp://example.com/media.mp4'` | `str` | URL for streaming protocols such as RTSP, RTMP, or an IP address. |
|
||||
| multi-stream ✅ | `'list.streams'` | `str` or `Path` | `*.streams` text file with one stream URL per row, i.e. 8 streams will run at batch-size 8. |
|
||||
|
||||
Below are code examples for using each source type:
|
||||
|
||||
@ -262,16 +263,19 @@ Below are code examples for using each source type:
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
```
|
||||
|
||||
=== "Stream"
|
||||
Run inference on remote streaming sources using RTSP, RTMP, and IP address protocols.
|
||||
=== "Streams"
|
||||
Run inference on remote streaming sources using RTSP, RTMP, and IP address protocols. If mutliple streams are provided in a `*.streams` text file then batched inference will run, i.e. 8 streams will run at batch-size 8, otherwise single streams will run at batch-size 1.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Define source as RTSP, RTMP or IP streaming address
|
||||
source = 'rtsp://example.com/media.mp4'
|
||||
# Single stream with batch-size 1 inference
|
||||
source = 'rtsp://example.com/media.mp4' # RTSP, RTMP or IP streaming address
|
||||
|
||||
# Multiple streams with batched inference (i.e. batch-size 8 for 8 streams)
|
||||
source = 'path/to/list.streams' # *.streams text file with one streaming address per row
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
@ -28,7 +28,7 @@ Ultralytics provides various installation methods including pip, conda, and Dock
|
||||
|
||||
```bash
|
||||
# Install the ultralytics package using conda
|
||||
conda install ultralytics
|
||||
conda install -c conda-forge ultralytics
|
||||
```
|
||||
|
||||
=== "Git clone"
|
||||
|
Loading…
x
Reference in New Issue
Block a user