mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
🖼️ Format bbox label with fixed precision for ortcpp-example (#4409)
Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
8d7490f060
commit
4885538693
@ -11,20 +11,22 @@ set(CMAKE_CXX_EXTENSIONS ON)
|
||||
set(CMAKE_INCLUDE_CURRENT_DIR ON)
|
||||
|
||||
|
||||
# OpenCV
|
||||
# -------------- OpenCV ------------------#
|
||||
find_package(OpenCV REQUIRED)
|
||||
include_directories(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
|
||||
# -------------- Compile CUDA for FP16 inference if needed ------------------#
|
||||
option(USE_CUDA "Enable CUDA support" ON)
|
||||
if (USE_CUDA)
|
||||
if (NOT APPLE AND USE_CUDA)
|
||||
find_package(CUDA REQUIRED)
|
||||
include_directories(${CUDA_INCLUDE_DIRS})
|
||||
add_definitions(-DUSE_CUDA)
|
||||
else ()
|
||||
set(USE_CUDA OFF)
|
||||
endif ()
|
||||
|
||||
# ONNXRUNTIME
|
||||
# -------------- ONNXRUNTIME ------------------#
|
||||
|
||||
# Set ONNXRUNTIME_VERSION
|
||||
set(ONNXRUNTIME_VERSION 1.15.1)
|
||||
@ -84,3 +86,11 @@ endif ()
|
||||
# Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
|
||||
# and put it in the same folder of the executable file
|
||||
configure_file(coco.yaml ${CMAKE_CURRENT_BINARY_DIR}/coco.yaml COPYONLY)
|
||||
|
||||
# Copy yolov8n.onnx file to the same folder of the executable file
|
||||
configure_file(yolov8n.onnx ${CMAKE_CURRENT_BINARY_DIR}/yolov8n.onnx COPYONLY)
|
||||
|
||||
# Create folder name images in the same folder of the executable file
|
||||
add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E make_directory ${CMAKE_CURRENT_BINARY_DIR}/images
|
||||
)
|
||||
|
@ -1,14 +1,19 @@
|
||||
# YOLOv8 OnnxRuntime C++
|
||||
<h1 align="center">YOLOv8 OnnxRuntime C++</h1>
|
||||
|
||||
<p align="center">
|
||||
<img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B">
|
||||
<img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white"></img>
|
||||
</p>
|
||||
|
||||
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
|
||||
|
||||
## Benefits
|
||||
## Benefits ✨
|
||||
|
||||
- Friendly for deployment in the industrial sector.
|
||||
- Faster than OpenCV's DNN inference on both CPU and GPU.
|
||||
- Supports FP32 and FP16 CUDA acceleration.
|
||||
|
||||
## Exporting YOLOv8 Models
|
||||
## Exporting YOLOv8 Models 📦
|
||||
|
||||
To export YOLOv8 models, use the following Python script:
|
||||
|
||||
@ -28,25 +33,50 @@ Alternatively, you can use the following command for exporting the model in the
|
||||
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
|
||||
```
|
||||
|
||||
## Download COCO.yaml file
|
||||
## Download COCO.yaml file 📂
|
||||
|
||||
In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
|
||||
|
||||
## Dependencies
|
||||
## Dependencies ⚙️
|
||||
|
||||
| Dependency | Version |
|
||||
| -------------------------------- | ------------- |
|
||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ | >=17 |
|
||||
| Cmake | >=3.5 |
|
||||
| Cuda (Optional) | >=11.4,\<12.0 |
|
||||
| cuDNN (Cuda required) | =8 |
|
||||
| Dependency | Version |
|
||||
| -------------------------------- | -------------- |
|
||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ Standard | >=17 |
|
||||
| Cmake | >=3.5 |
|
||||
| Cuda (Optional) | >=11.4 \<12.0 |
|
||||
| cuDNN (Cuda required) | =8 |
|
||||
|
||||
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
|
||||
|
||||
Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
|
||||
|
||||
## Usage
|
||||
## Build 🛠️
|
||||
|
||||
1. Clone the repository to your local machine.
|
||||
1. Navigate to the root directory of the repository.
|
||||
1. Create a build directory and navigate to it:
|
||||
|
||||
```console
|
||||
mkdir build && cd build
|
||||
```
|
||||
|
||||
4. Run CMake to generate the build files:
|
||||
|
||||
```console
|
||||
cmake ..
|
||||
```
|
||||
|
||||
5. Build the project:
|
||||
|
||||
```console
|
||||
make
|
||||
```
|
||||
|
||||
6. The built executable should now be located in the `build` directory.
|
||||
|
||||
## Usage 🚀
|
||||
|
||||
```c++
|
||||
// CPU inference
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include "inference.h"
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
@ -18,16 +19,31 @@ void file_iterator(DCSP_CORE *&p) {
|
||||
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
|
||||
|
||||
cv::rectangle(img, re.box, color, 3);
|
||||
std::string label = p->classes[re.classId] + " " + std::to_string(re.confidence);
|
||||
|
||||
float confidence = floor(100 * re.confidence) / 100;
|
||||
std::cout << std::fixed << std::setprecision(2);
|
||||
std::string label = p->classes[re.classId] + " " +
|
||||
std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4);
|
||||
|
||||
cv::rectangle(
|
||||
img,
|
||||
cv::Point(re.box.x, re.box.y - 25),
|
||||
cv::Point(re.box.x + label.length() * 15, re.box.y),
|
||||
color,
|
||||
cv::FILLED
|
||||
);
|
||||
|
||||
cv::putText(
|
||||
img,
|
||||
label,
|
||||
cv::Point(re.box.x, re.box.y - 5),
|
||||
cv::FONT_HERSHEY_SIMPLEX,
|
||||
0.75,
|
||||
color,
|
||||
cv::Scalar(0, 0, 0),
|
||||
2
|
||||
);
|
||||
|
||||
|
||||
}
|
||||
std::cout << "Press any key to exit" << std::endl;
|
||||
cv::imshow("Result of Detection", img);
|
||||
|
Loading…
x
Reference in New Issue
Block a user