mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Shorten module paths with new 'nn' dir (#96)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
4fb04be20b
commit
48cffa176e
@ -1 +1,5 @@
|
||||
__version__ = "8.0.0.dev0"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
|
||||
__all__ = ["__version__", "YOLO"] # allow simpler import
|
||||
|
0
ultralytics/nn/__init__.py
Normal file
0
ultralytics/nn/__init__.py
Normal file
@ -13,6 +13,7 @@ from PIL import Image
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT
|
||||
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
||||
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
|
||||
|
||||
@ -32,8 +33,6 @@ class AutoBackend(nn.Module):
|
||||
# TensorFlow Lite: *.tflite
|
||||
# TensorFlow Edge TPU: *_edgetpu.tflite
|
||||
# PaddlePaddle: *_paddle_model
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
||||
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
@ -54,6 +53,7 @@ class AutoBackend(nn.Module):
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
elif pt: # PyTorch
|
||||
from ultralytics.nn.tasks import attempt_load_weights
|
||||
model = attempt_load_weights(weights if isinstance(weights, list) else w,
|
||||
device=device,
|
||||
inplace=True,
|
||||
@ -89,7 +89,7 @@ class AutoBackend(nn.Module):
|
||||
elif xml: # OpenVINO
|
||||
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||||
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||
from openvino.runtime import Core, Layout, get_batch
|
||||
from openvino.runtime import Core, Layout, get_batch # noqa
|
||||
ie = Core()
|
||||
if not Path(w).is_file(): # if not *.xml
|
||||
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
@ -17,6 +17,7 @@ import torch.nn as nn
|
||||
from PIL import Image, ImageOps
|
||||
from torch.cuda import amp
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.augment import LetterBox
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
@ -25,8 +26,6 @@ from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.yolo.utils.tal import dist2bbox, make_anchors
|
||||
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
||||
|
||||
from .autobackend import AutoBackend
|
||||
|
||||
# from utils.plots import feature_visualization TODO
|
||||
|
||||
|
@ -1,11 +1,19 @@
|
||||
import contextlib
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import thop
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
import yaml
|
||||
|
||||
from ultralytics.yolo.utils.modeling import parse_model
|
||||
from ultralytics.yolo.utils.modeling.modules import *
|
||||
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts, model_info,
|
||||
scale_img, time_sync)
|
||||
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
|
||||
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
|
||||
GhostBottleneck, GhostConv, Segment)
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
||||
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts,
|
||||
make_divisible, model_info, scale_img, time_sync)
|
||||
|
||||
|
||||
class BaseModel(nn.Module):
|
||||
@ -75,7 +83,6 @@ class DetectionModel(BaseModel):
|
||||
if isinstance(cfg, dict):
|
||||
self.yaml = cfg # model dict
|
||||
else: # is *.yaml
|
||||
import yaml # for torch hub
|
||||
self.yaml_file = Path(cfg).name
|
||||
with open(cfg, encoding='ascii', errors='ignore') as f:
|
||||
self.yaml = yaml.safe_load(f) # model dict
|
||||
@ -166,6 +173,7 @@ class ClassificationModel(BaseModel):
|
||||
|
||||
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
||||
# Create a YOLOv5 classification model from a YOLOv5 detection model
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
if isinstance(model, AutoBackend):
|
||||
model = model.model # unwrap DetectMultiBackend
|
||||
model.model = model.model[:cutoff] # backbone
|
||||
@ -192,7 +200,6 @@ class ClassificationModel(BaseModel):
|
||||
@staticmethod
|
||||
def reshape_outputs(model, nc):
|
||||
# Update a TorchVision classification model to class count 'n' if required
|
||||
from ultralytics.yolo.utils.modeling.modules import Classify
|
||||
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
||||
if isinstance(m, Classify): # YOLO Classify() head
|
||||
if m.linear.out_features != nc:
|
||||
@ -210,3 +217,110 @@ class ClassificationModel(BaseModel):
|
||||
i = types.index(nn.Conv2d) # nn.Conv2d index
|
||||
if m[i].out_channels != nc:
|
||||
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
||||
|
||||
|
||||
# Functions ------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
|
||||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||
from ultralytics.yolo.utils.downloads import attempt_download
|
||||
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
if not hasattr(ckpt, 'stride'):
|
||||
ckpt.stride = torch.tensor([32.])
|
||||
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
||||
|
||||
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
||||
|
||||
# Module compatibility updates
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||||
m.inplace = inplace # torch 1.7.0 compatibility
|
||||
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model
|
||||
if len(model) == 1:
|
||||
return model[-1]
|
||||
|
||||
# Return detection ensemble
|
||||
print(f'Ensemble created with {weights}\n')
|
||||
for k in 'names', 'nc', 'yaml':
|
||||
setattr(model, k, getattr(model[0], k))
|
||||
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
||||
return model
|
||||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
# Parse a YOLOv5 model.yaml dictionary
|
||||
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
|
||||
nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||
if act:
|
||||
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||
no = nc + 4 # number of outputs = classes + box
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
with contextlib.suppress(NameError):
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
|
||||
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in {
|
||||
Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP,
|
||||
C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||
c1, c2 = ch[f], args[0]
|
||||
if c2 != no: # if not output
|
||||
c2 = make_divisible(c2 * gw, 8)
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
|
||||
args.insert(2, n) # number of repeats
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[x] for x in f)
|
||||
# TODO: channel, gw, gd
|
||||
elif m in {Detect, Segment}:
|
||||
args.append([ch[x] for x in f])
|
||||
if m is Segment:
|
||||
args[3] = make_divisible(args[3] * gw, 8)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
||||
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
if i == 0:
|
||||
ch = []
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
def get_model(model='s.pt', pretrained=True):
|
||||
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
||||
if model.endswith(".pt"):
|
||||
model = model.split(".")[0]
|
||||
|
||||
if Path(f"{model}.pt").is_file(): # local file
|
||||
return attempt_load_weights(f"{model}.pt", device='cpu')
|
||||
elif model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
||||
return torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
|
||||
else: # Ultralytics assets
|
||||
return attempt_load_weights(f"{model}.pt", device='cpu')
|
@ -1,6 +1,5 @@
|
||||
import cv2
|
||||
import hydra
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.utils import ROOT
|
||||
|
@ -1,5 +1,5 @@
|
||||
from ultralytics.nn.tasks import DetectionModel
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
|
||||
|
||||
|
||||
def test_model_parser():
|
||||
|
@ -1,7 +0,0 @@
|
||||
from ultralytics.yolo import v8
|
||||
|
||||
from .engine.model import YOLO
|
||||
from .engine.trainer import BaseTrainer
|
||||
from .engine.validator import BaseValidator
|
||||
|
||||
__all__ = ["BaseTrainer", "BaseValidator", "YOLO"] # allow simpler import
|
@ -2,14 +2,13 @@ import torch
|
||||
import yaml
|
||||
|
||||
from ultralytics import yolo # noqa required for python usage
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||
# from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
||||
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
||||
|
||||
# map head: [model, trainer, validator, predictor]
|
||||
|
@ -30,13 +30,13 @@ from pathlib import Path
|
||||
|
||||
import cv2
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS, check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_imshow
|
||||
from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, select_device, smart_inference_mode
|
||||
|
||||
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
|
||||
@ -95,7 +95,7 @@ class BasePredictor:
|
||||
device = select_device(self.args.device)
|
||||
model = model or self.args.model
|
||||
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half) # NOTE: not passing data
|
||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half)
|
||||
stride, pt = model.stride, model.pt
|
||||
imgsz = check_imgsz(self.args.imgsz, s=stride) # check image size
|
||||
|
||||
|
@ -4,11 +4,11 @@ import torch
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import LOGGER, TQDM_BAR_FORMAT
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device, smart_inference_mode
|
||||
|
||||
|
@ -1,109 +0,0 @@
|
||||
import contextlib
|
||||
|
||||
import torchvision
|
||||
|
||||
from ultralytics.yolo.utils.downloads import attempt_download
|
||||
from ultralytics.yolo.utils.modeling.modules import *
|
||||
|
||||
|
||||
def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
|
||||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
if not hasattr(ckpt, 'stride'):
|
||||
ckpt.stride = torch.tensor([32.])
|
||||
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
||||
|
||||
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
||||
|
||||
# Module compatibility updates
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||||
m.inplace = inplace # torch 1.7.0 compatibility
|
||||
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model
|
||||
if len(model) == 1:
|
||||
return model[-1]
|
||||
|
||||
# Return detection ensemble
|
||||
print(f'Ensemble created with {weights}\n')
|
||||
for k in 'names', 'nc', 'yaml':
|
||||
setattr(model, k, getattr(model[0], k))
|
||||
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
||||
return model
|
||||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
# Parse a YOLOv5 model.yaml dictionary
|
||||
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<50}{'arguments':<30}")
|
||||
nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||
if act:
|
||||
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||
no = nc + 4 # number of outputs = classes + box
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
with contextlib.suppress(NameError):
|
||||
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||
|
||||
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in {
|
||||
Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP,
|
||||
C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||
c1, c2 = ch[f], args[0]
|
||||
if c2 != no: # if not output
|
||||
c2 = make_divisible(c2 * gw, 8)
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
|
||||
args.insert(2, n) # number of repeats
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[x] for x in f)
|
||||
# TODO: channel, gw, gd
|
||||
elif m in {Detect, Segment}:
|
||||
args.append([ch[x] for x in f])
|
||||
if m is Segment:
|
||||
args[3] = make_divisible(args[3] * gw, 8)
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
||||
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{m.np:10.0f} {t:<50}{str(args):<30}') # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
if i == 0:
|
||||
ch = []
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
def get_model(model='s.pt', pretrained=True):
|
||||
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
||||
if model.endswith(".pt"):
|
||||
model = model.split(".")[0]
|
||||
|
||||
if Path(f"{model}.pt").is_file(): # local file
|
||||
return attempt_load_weights(f"{model}.pt", device='cpu')
|
||||
elif model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
||||
return torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
|
||||
else: # Ultralytics assets
|
||||
return attempt_load_weights(f"{model}.pt", device='cpu')
|
@ -6,5 +6,4 @@ ROOT = Path(__file__).parents[0] # yolov8 ROOT
|
||||
|
||||
__all__ = ["classify", "segment", "detect"]
|
||||
|
||||
# Patch hydra cli
|
||||
from ultralytics.yolo.utils.configs import hydra_patch
|
||||
from ultralytics.yolo.utils.configs import hydra_patch # noqa (patch hydra cli)
|
||||
|
@ -3,8 +3,7 @@ import torch
|
||||
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.yolo.utils.plotting import Annotator
|
||||
|
||||
|
||||
class ClassificationPredictor(BasePredictor):
|
||||
|
@ -1,11 +1,10 @@
|
||||
import hydra
|
||||
import torch
|
||||
|
||||
from ultralytics.nn.tasks import ClassificationModel, get_model
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.utils.modeling import get_model
|
||||
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel
|
||||
|
||||
|
||||
class ClassificationTrainer(BaseTrainer):
|
||||
|
@ -2,6 +2,7 @@ import hydra
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.nn.tasks import DetectionModel
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
@ -9,7 +10,6 @@ from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.utils import colorstr
|
||||
from ultralytics.yolo.utils.loss import BboxLoss
|
||||
from ultralytics.yolo.utils.metrics import smooth_BCE
|
||||
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
||||
|
@ -1,11 +1,9 @@
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import ROOT, ops
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.plotting import colors, save_one_box
|
||||
|
||||
from ..detect.predict import DetectionPredictor
|
||||
|
||||
|
@ -3,10 +3,10 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.tasks import SegmentationModel
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
|
||||
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
|
||||
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
Loading…
x
Reference in New Issue
Block a user