mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-10-31 14:35:40 +08:00 
			
		
		
		
	Add millimeters in solutions/distance_caculation.py + object-cropping.md visuals (#7860)
				
					
				
			Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		
							parent
							
								
									afb0cb1057
								
							
						
					
					
						commit
						492f397ae2
					
				| @ -37,7 +37,7 @@ Here's a compilation of in-depth guides to help you master different aspects of | ||||
| - [Objects Counting in Regions](region-counting.md) 🚀 NEW: Explore counting objects in specific regions with Ultralytics YOLOv8 for precise and efficient object detection in varied areas. | ||||
| - [Security Alarm System](security-alarm-system.md) 🚀 NEW: Discover the process of creating a security alarm system with Ultralytics YOLOv8. This system triggers alerts upon detecting new objects in the frame. Subsequently, you can customize the code to align with your specific use case. | ||||
| - [Heatmaps](heatmaps.md) 🚀 NEW: Elevate your understanding of data with our Detection Heatmaps! These intuitive visual tools use vibrant color gradients to vividly illustrate the intensity of data values across a matrix. Essential in computer vision, heatmaps are skillfully designed to highlight areas of interest, providing an immediate, impactful way to interpret spatial information. | ||||
| - [Instance Segmentation with Object Tracking](instance-segmentation-and-tracking.md) 🚀 NEW: Explore our feature on Object Segmentation in Bounding Boxes Shape, providing a visual representation of precise object boundaries for enhanced understanding and analysis. | ||||
| - [Instance Segmentation with Object Tracking](instance-segmentation-and-tracking.md) 🚀 NEW: Explore our feature on [Object Segmentation](https://docs.ultralytics.com/tasks/segment/) in Bounding Boxes Shape, providing a visual representation of precise object boundaries for enhanced understanding and analysis. | ||||
| - [VisionEye View Objects Mapping](vision-eye.md) 🚀 NEW: This feature aim computers to discern and focus on specific objects, much like the way the human eye observes details from a particular viewpoint. | ||||
| - [Speed Estimation](speed-estimation.md) 🚀 NEW: Speed estimation in computer vision relies on analyzing object motion through techniques like [object tracking](https://docs.ultralytics.com/modes/track/), crucial for applications like autonomous vehicles and traffic monitoring. | ||||
| - [Distance Calculation](distance-calculation.md) 🚀 NEW: Distance calculation, which involves measuring the separation between two objects within a defined space, is a crucial aspect. In the context of Ultralytics YOLOv8, the method employed for this involves using the bounding box centroid to determine the distance associated with user-highlighted bounding boxes. | ||||
|  | ||||
| @ -16,6 +16,15 @@ Object cropping with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly | ||||
| - **Reduced Data Volume**: By extracting only relevant objects, object cropping helps in minimizing data size, making it efficient for storage, transmission, or subsequent computational tasks. | ||||
| - **Enhanced Precision**: YOLOv8's object detection accuracy ensures that the cropped objects maintain their spatial relationships, preserving the integrity of the visual information for detailed analysis. | ||||
| 
 | ||||
| 
 | ||||
| ## Visuals | ||||
| 
 | ||||
| |                                                                               Airport Luggage                                                                                |                                                                                                                          | ||||
| |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | ||||
| |  | | ||||
| |                                                     Suitcases Cropping at airport conveyor belt using Ultralytics YOLOv8                                                     |                                                                                                        | ||||
| 
 | ||||
| 
 | ||||
| !!! Example "Object Cropping using YOLOv8 Example" | ||||
| 
 | ||||
|     === "Object Cropping" | ||||
|  | ||||
| @ -121,21 +121,7 @@ class DistanceCalculation: | ||||
|             centroid2 (point): Second bounding box data | ||||
|         """ | ||||
|         pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2) | ||||
|         return pixel_distance / self.pixel_per_meter | ||||
| 
 | ||||
|     def plot_distance_and_line(self, distance): | ||||
|         """ | ||||
|         Plot the distance and line on frame | ||||
|         Args: | ||||
|             distance (float): Distance between two centroids | ||||
|         """ | ||||
|         cv2.rectangle(self.im0, (15, 25), (280, 70), (255, 255, 255), -1) | ||||
|         cv2.putText( | ||||
|             self.im0, f"Distance : {distance:.2f}m", (20, 55), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv2.LINE_AA | ||||
|         ) | ||||
|         cv2.line(self.im0, self.centroids[0], self.centroids[1], self.line_color, 3) | ||||
|         cv2.circle(self.im0, self.centroids[0], 6, self.centroid_color, -1) | ||||
|         cv2.circle(self.im0, self.centroids[1], 6, self.centroid_color, -1) | ||||
|         return pixel_distance / self.pixel_per_meter, (pixel_distance / self.pixel_per_meter) * 1000 | ||||
| 
 | ||||
|     def start_process(self, im0, tracks): | ||||
|         """ | ||||
| @ -166,8 +152,10 @@ class DistanceCalculation: | ||||
|                 centroid = self.calculate_centroid(self.selected_boxes[trk_id]) | ||||
|                 self.centroids.append(centroid) | ||||
| 
 | ||||
|             distance = self.calculate_distance(self.centroids[0], self.centroids[1]) | ||||
|             self.plot_distance_and_line(distance) | ||||
|             distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1]) | ||||
|             self.annotator.plot_distance_and_line( | ||||
|                 distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color | ||||
|             ) | ||||
| 
 | ||||
|         self.centroids = [] | ||||
| 
 | ||||
|  | ||||
| @ -519,6 +519,51 @@ class Annotator: | ||||
|             self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2 | ||||
|         ) | ||||
| 
 | ||||
|     def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color): | ||||
|         """ | ||||
|         Plot the distance and line on frame. | ||||
| 
 | ||||
|         Args: | ||||
|             distance_m (float): Distance between two bbox centroids in meters. | ||||
|             distance_mm (float): Distance between two bbox centroids in millimeters. | ||||
|             centroids (list): Bounding box centroids data. | ||||
|             line_color (RGB): Distance line color. | ||||
|             centroid_color (RGB): Bounding box centroid color. | ||||
|         """ | ||||
|         (text_width_m, text_height_m), _ = cv2.getTextSize( | ||||
|             f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2 | ||||
|         ) | ||||
|         cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1) | ||||
|         cv2.putText( | ||||
|             self.im, | ||||
|             f"Distance M: {distance_m:.2f}m", | ||||
|             (20, 50), | ||||
|             cv2.FONT_HERSHEY_SIMPLEX, | ||||
|             0.8, | ||||
|             (0, 0, 0), | ||||
|             2, | ||||
|             cv2.LINE_AA, | ||||
|         ) | ||||
| 
 | ||||
|         (text_width_mm, text_height_mm), _ = cv2.getTextSize( | ||||
|             f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2 | ||||
|         ) | ||||
|         cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1) | ||||
|         cv2.putText( | ||||
|             self.im, | ||||
|             f"Distance MM: {distance_mm:.2f}mm", | ||||
|             (20, 100), | ||||
|             cv2.FONT_HERSHEY_SIMPLEX, | ||||
|             0.8, | ||||
|             (0, 0, 0), | ||||
|             2, | ||||
|             cv2.LINE_AA, | ||||
|         ) | ||||
| 
 | ||||
|         cv2.line(self.im, centroids[0], centroids[1], line_color, 3) | ||||
|         cv2.circle(self.im, centroids[0], 6, centroid_color, -1) | ||||
|         cv2.circle(self.im, centroids[1], 6, centroid_color, -1) | ||||
| 
 | ||||
|     def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10): | ||||
|         """ | ||||
|         Function for pinpoint human-vision eye mapping and plotting. | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Muhammad Rizwan Munawar
						Muhammad Rizwan Munawar