diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index efbdd7c6..547e7185 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -40,7 +40,7 @@ repos: name: YAPF formatting - repo: https://github.com/executablebooks/mdformat - rev: 0.7.16 + rev: 0.7.17 hooks: - id: mdformat name: MD formatting diff --git a/docs/guides/index.md b/docs/guides/index.md index 8c77e208..afc5c6b4 100644 --- a/docs/guides/index.md +++ b/docs/guides/index.md @@ -1,7 +1,7 @@ --- comments: true description: In-depth exploration of Ultralytics' YOLO. Learn about the YOLO object detection model, how to train it on custom data, multi-GPU training, exporting, predicting, deploying, and more. -keywords: Ultralytics, YOLO, Deep Learning, Object detection, PyTorch, Tutorial, Multi-GPU training, Custom data training +keywords: Ultralytics, YOLO, Deep Learning, Object detection, PyTorch, Tutorial, Multi-GPU training, Custom data training, SAHI, Tiled Inference --- # Comprehensive Tutorials to Ultralytics YOLO @@ -16,5 +16,12 @@ Here's a compilation of in-depth guides to help you master different aspects of * [K-Fold Cross Validation](kfold-cross-validation.md) 🚀 NEW: Learn how to improve model generalization using K-Fold cross-validation technique. * [Hyperparameter Tuning](hyperparameter-tuning.md) 🚀 NEW: Discover how to optimize your YOLO models by fine-tuning hyperparameters using the Tuner class and genetic evolution algorithms. +* [Using YOLOv8 with SAHI for Sliced Inference](sahi-tiled-inference.md) 🚀 NEW: Comprehensive guide on leveraging SAHI's sliced inference capabilities with YOLOv8 for object detection in high-resolution images. -Note: More guides about training, exporting, predicting, and deploying with Ultralytics YOLO are coming soon. Stay tuned! +## Contribute to Our Guides + +We welcome contributions from the community! If you've mastered a particular aspect of Ultralytics YOLO that's not yet covered in our guides, we encourage you to share your expertise. Writing a guide is a great way to give back to the community and help us make our documentation more comprehensive and user-friendly. + +To get started, please read our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for guidelines on how to open up a Pull Request (PR) 🛠️. We look forward to your contributions! + +Let's work together to make the Ultralytics YOLO ecosystem more robust and versatile 🙏! \ No newline at end of file diff --git a/docs/guides/sahi-tiled-inference.md b/docs/guides/sahi-tiled-inference.md new file mode 100644 index 00000000..a4f2f5a0 --- /dev/null +++ b/docs/guides/sahi-tiled-inference.md @@ -0,0 +1,147 @@ +--- +comments: true +description: A comprehensive guide on how to use YOLOv8 with SAHI for standard and sliced inference in object detection tasks. +keywords: YOLOv8, SAHI, Sliced Inference, Object Detection, Ultralytics, Large Scale Image Analysis, High-Resolution Imagery +--- + +# Ultralytics Docs: Using YOLOv8 with SAHI for Sliced Inference + +Welcome to the Ultralytics documentation on how to use YOLOv8 with SAHI (Slicing Aided Hyper Inference). In this comprehensive guide, we'll discuss what SAHI is, the benefits of sliced inference, and how to use SAHI with YOLOv8 for object detection tasks. + +![SAHI Sliced Inference](https://raw.githubusercontent.com/obss/sahi/main/resources/sliced_inference.gif) + +## Table of Contents + +1. [Introduction to SAHI](#introduction-to-sahi) +2. [What is Sliced Inference?](#what-is-sliced-inference) +3. [Installation and Preparation](#installation-and-preparation) +4. [Standard Inference with YOLOv8](#standard-inference-with-yolov8) +5. [Sliced Inference with YOLOv8](#sliced-inference-with-yolov8) +6. [Handling Prediction Results](#handling-prediction-results) +7. [Batch Prediction](#batch-prediction) + +## Introduction to SAHI + +SAHI is a powerful library aimed at performing efficient and accurate object detection over slices of an image, particularly useful for large scale and high-resolution imagery. It integrates seamlessly with YOLO models and allows for a more efficient usage of computational resources. + +## What is Sliced Inference? + +Sliced Inference is a technique that divides a large image into smaller slices, performs object detection on each slice, and then aggregates the results back onto the original image. This method is especially beneficial when dealing with high-resolution images as it significantly reduces the computational load without sacrificing detection accuracy. + +## Installation and Preparation + +### Installation + +To get started, install the latest versions of SAHI and Ultralytics: + +```bash +pip install -U ultralytics sahi +``` + +### Import Modules and Download Resources + +Here's how to import the necessary modules and download a YOLOv8 model and some test images: + +```python +from sahi.utils.yolov8 import download_yolov8s_model +from sahi import AutoDetectionModel +from sahi.utils.cv import read_image +from sahi.utils.file import download_from_url +from sahi.predict import get_prediction, get_sliced_prediction, predict +from pathlib import Path +from IPython.display import Image + +# Download YOLOv8 model +yolov8_model_path = "models/yolov8s.pt" +download_yolov8s_model(yolov8_model_path) + +# Download test images +download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/small-vehicles1.jpeg', 'demo_data/small-vehicles1.jpeg') +download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/terrain2.png', 'demo_data/terrain2.png') +``` + +## Standard Inference with YOLOv8 + +### Instantiate the Model + +You can instantiate a YOLOv8 model for object detection like this: + +```python +detection_model = AutoDetectionModel.from_pretrained( + model_type='yolov8', + model_path=yolov8_model_path, + confidence_threshold=0.3, + device="cpu", # or 'cuda:0' +) +``` + +### Perform Standard Prediction + +Perform standard inference using an image path or a numpy image. + +```python +# With an image path +result = get_prediction("demo_data/small-vehicles1.jpeg", detection_model) + +# With a numpy image +result = get_prediction(read_image("demo_data/small-vehicles1.jpeg"), detection_model) +``` + +### Visualize Results + +Export and visualize the predicted bounding boxes and masks: + +```python +result.export_visuals(export_dir="demo_data/") +Image("demo_data/prediction_visual.png") +``` + +## Sliced Inference with YOLOv8 + +Perform sliced inference by specifying the slice dimensions and overlap ratios: + +```python +result = get_sliced_prediction( + "demo_data/small-vehicles1.jpeg", + detection_model, + slice_height=256, + slice_width=256, + overlap_height_ratio=0.2, + overlap_width_ratio=0.2 +) +``` + +## Handling Prediction Results + +SAHI provides a `PredictionResult` object, which can be converted into various annotation formats: + +```python +# Access the object prediction list +object_prediction_list = result.object_prediction_list + +# Convert to COCO annotation, COCO prediction, imantics, and fiftyone formats +result.to_coco_annotations()[:3] +result.to_coco_predictions(image_id=1)[:3] +result.to_imantics_annotations()[:3] +result.to_fiftyone_detections()[:3] +``` + +## Batch Prediction + +For batch prediction on a directory of images: + +```python +predict( + model_type="yolov8", + model_path="path/to/yolov8n.pt", + model_device="cpu", # or 'cuda:0' + model_confidence_threshold=0.4, + source="path/to/dir", + slice_height=256, + slice_width=256, + overlap_height_ratio=0.2, + overlap_width_ratio=0.2, +) +``` + +That's it! Now you're equipped to use YOLOv8 with SAHI for both standard and sliced inference. diff --git a/docs/integrations/index.md b/docs/integrations/index.md index 71dadc10..9a8a1daa 100644 --- a/docs/integrations/index.md +++ b/docs/integrations/index.md @@ -59,3 +59,13 @@ We also support a variety of model export formats for deployment in different en | [NCNN](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` | Explore the links to learn more about each integration and how to get the most out of them with Ultralytics. + +## Contribute to Our Integrations + +We're always excited to see how the community integrates Ultralytics YOLO with other technologies, tools, and platforms! If you have successfully integrated YOLO with a new system or have valuable insights to share, consider contributing to our Integrations Docs. + +By writing a guide or tutorial, you can help expand our documentation and provide real-world examples that benefit the community. It's an excellent way to contribute to the growing ecosystem around Ultralytics YOLO. + +To contribute, please check out our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for instructions on how to submit a Pull Request (PR) 🛠️. We eagerly await your contributions! + +Let's collaborate to make the Ultralytics YOLO ecosystem more expansive and feature-rich 🙏! \ No newline at end of file diff --git a/mkdocs.yml b/mkdocs.yml index 05df9b46..bf32994a 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -216,6 +216,7 @@ nav: - guides/index.md - K-Fold Cross Validation: guides/kfold-cross-validation.md - Hyperparameter Tuning: guides/hyperparameter-tuning.md + - SAHI Tiled Inference: guides/sahi-tiled-inference.md - Integrations: - integrations/index.md - OpenVINO: integrations/openvino.md diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py index 752d7f2b..ad146d2a 100644 --- a/ultralytics/__init__.py +++ b/ultralytics/__init__.py @@ -1,6 +1,6 @@ # Ultralytics YOLO 🚀, AGPL-3.0 license -__version__ = '8.0.170' +__version__ = '8.0.171' from ultralytics.models import RTDETR, SAM, YOLO from ultralytics.models.fastsam import FastSAM diff --git a/ultralytics/cfg/models/README.md b/ultralytics/cfg/models/README.md index 1b879bd0..4749441d 100644 --- a/ultralytics/cfg/models/README.md +++ b/ultralytics/cfg/models/README.md @@ -30,6 +30,12 @@ model.train(data="coco128.yaml", epochs=100) # train the model Ultralytics supports many model architectures. Visit https://docs.ultralytics.com/models to view detailed information and usage. Any of these models can be used by loading their configs or pretrained checkpoints if available. -## Contributing New Models +## Contribute New Models -If you've developed a new model architecture or have improvements for existing models that you'd like to contribute to the Ultralytics community, please submit your contribution in a new Pull Request. For more details, visit our [Contributing Guide](https://docs.ultralytics.com/help/contributing). +Have you trained a new YOLO variant or achieved state-of-the-art performance with specific tuning? We'd love to showcase your work in our Models section! Contributions from the community in the form of new models, architectures, or optimizations are highly valued and can significantly enrich our repository. + +By contributing to this section, you're helping us offer a wider array of model choices and configurations to the community. It's a fantastic way to share your knowledge and expertise while making the Ultralytics YOLO ecosystem even more versatile. + +To get started, please consult our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for step-by-step instructions on how to submit a Pull Request (PR) 🛠️. Your contributions are eagerly awaited! + +Let's join hands to extend the range and capabilities of the Ultralytics YOLO models 🙏! diff --git a/ultralytics/engine/predictor.py b/ultralytics/engine/predictor.py index ef728b9c..05dfb43d 100644 --- a/ultralytics/engine/predictor.py +++ b/ultralytics/engine/predictor.py @@ -121,11 +121,11 @@ class BasePredictor: im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im) - img = im.to(self.device) - img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 + im = im.to(self.device) + im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32 if not_tensor: - img /= 255 # 0 - 255 to 0.0 - 1.0 - return img + im /= 255 # 0 - 255 to 0.0 - 1.0 + return im def inference(self, im, *args, **kwargs): visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem, diff --git a/ultralytics/models/yolo/classify/val.py b/ultralytics/models/yolo/classify/val.py index 272c98e8..456e64cf 100644 --- a/ultralytics/models/yolo/classify/val.py +++ b/ultralytics/models/yolo/classify/val.py @@ -42,7 +42,7 @@ class ClassificationValidator(BaseValidator): """Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" self.names = model.names self.nc = len(model.names) - self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify') + self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task='classify') self.pred = [] self.targets = [] diff --git a/ultralytics/models/yolo/detect/val.py b/ultralytics/models/yolo/detect/val.py index d9f84ae8..6fca481a 100644 --- a/ultralytics/models/yolo/detect/val.py +++ b/ultralytics/models/yolo/detect/val.py @@ -68,7 +68,7 @@ class DetectionValidator(BaseValidator): self.nc = len(model.names) self.metrics.names = self.names self.metrics.plot = self.args.plots - self.confusion_matrix = ConfusionMatrix(nc=self.nc) + self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf) self.seen = 0 self.jdict = [] self.stats = [] diff --git a/ultralytics/trackers/README.md b/ultralytics/trackers/README.md index fee2b819..a6505e0b 100644 --- a/ultralytics/trackers/README.md +++ b/ultralytics/trackers/README.md @@ -83,6 +83,12 @@ yolo pose track source=... tracker=... By default, trackers will use the configuration in `ultralytics/cfg/trackers`. We also support using a modified tracker config file. Please refer to the tracker config files in `ultralytics/cfg/trackers`. -## Contributing New Trackers +## Contribute to Our Trackers Section -If you've developed a new tracker architecture or have improvements for existing trackers that you'd like to contribute to the Ultralytics community, please submit your contribution in a new Pull Request. For more details, visit our [Contributing Guide](https://docs.ultralytics.com/help/contributing). +Are you proficient in multi-object tracking and have successfully implemented or adapted a tracking algorithm with Ultralytics YOLO? We invite you to contribute to our Trackers section! Your real-world applications and solutions could be invaluable for users working on tracking tasks. + +By contributing to this section, you help expand the scope of tracking solutions available within the Ultralytics YOLO framework, adding another layer of functionality and utility for the community. + +To initiate your contribution, please refer to our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for comprehensive instructions on submitting a Pull Request (PR) 🛠️. We are excited to see what you bring to the table! + +Together, let's enhance the tracking capabilities of the Ultralytics YOLO ecosystem 🙏! diff --git a/ultralytics/utils/callbacks/base.py b/ultralytics/utils/callbacks/base.py index c45d3121..2e676bf3 100644 --- a/ultralytics/utils/callbacks/base.py +++ b/ultralytics/utils/callbacks/base.py @@ -198,7 +198,8 @@ def add_integration_callbacks(instance): """ # Load HUB callbacks - from .hub import callbacks + from .hub import callbacks as hub_cb + callbacks_list = [hub_cb] # Load training callbacks if 'Trainer' in instance.__class__.__name__: @@ -210,13 +211,15 @@ def add_integration_callbacks(instance): from .raytune import callbacks as tune_cb from .tensorboard import callbacks as tb_cb from .wb import callbacks as wb_cb - callbacks.update({**clear_cb, **comet_cb, **dvc_cb, **mlflow_cb, **neptune_cb, **tune_cb, **tb_cb, **wb_cb}) + callbacks_list.extend([clear_cb, comet_cb, dvc_cb, mlflow_cb, neptune_cb, tune_cb, tb_cb, wb_cb]) # Load export callbacks (patch to avoid CoreML protobuf error) if 'Exporter' in instance.__class__.__name__: from .tensorboard import callbacks as tb_cb - callbacks.update(tb_cb) + callbacks_list.append(tb_cb) - for k, v in callbacks.items(): - if v not in instance.callbacks[k]: # prevent duplicate callbacks addition - instance.callbacks[k].append(v) # callback[name].append(func) + # Add the callbacks to the callbacks dictionary + for callbacks in callbacks_list: + for k, v in callbacks.items(): + if v not in instance.callbacks[k]: + instance.callbacks[k].append(v) diff --git a/ultralytics/utils/metrics.py b/ultralytics/utils/metrics.py index 028e45f0..731b55ab 100644 --- a/ultralytics/utils/metrics.py +++ b/ultralytics/utils/metrics.py @@ -189,7 +189,7 @@ class ConfusionMatrix: self.task = task self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc)) self.nc = nc # number of classes - self.conf = conf + self.conf = 0.25 if conf is None else conf # argument may be None from default cfg self.iou_thres = iou_thres def process_cls_preds(self, preds, targets): diff --git a/ultralytics/utils/plotting.py b/ultralytics/utils/plotting.py index 9ad79e20..6237f133 100644 --- a/ultralytics/utils/plotting.py +++ b/ultralytics/utils/plotting.py @@ -12,11 +12,10 @@ import torch from PIL import Image, ImageDraw, ImageFont from PIL import __version__ as pil_version -from ultralytics.utils import LOGGER, TryExcept, plt_settings, threaded +from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded from .checks import check_font, check_version, is_ascii from .files import increment_path -from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh class Colors: @@ -163,7 +162,7 @@ class Annotator: im_gpu = im_gpu * inv_alph_masks[-1] + mcs im_mask = (im_gpu * 255) im_mask_np = im_mask.byte().cpu().numpy() - self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape) + self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape) if self.pil: # Convert im back to PIL and update draw self.fromarray(self.im) @@ -268,8 +267,9 @@ def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): import pandas as pd import seaborn as sn - # Filter matplotlib>=3.7.2 warning + # Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight') + warnings.filterwarnings('ignore', category=FutureWarning) # Plot dataset labels LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") @@ -285,8 +285,8 @@ def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): # Matplotlib labels ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) - with contextlib.suppress(Exception): # color histogram bars by class - [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 + for i in range(nc): + y[2].patches[i].set_color([x / 255 for x in colors(i)]) ax[0].set_ylabel('instances') if 0 < len(names) < 30: ax[0].set_xticks(range(len(names))) @@ -298,7 +298,7 @@ def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): # Rectangles boxes[:, 0:2] = 0.5 # center - boxes = xywh2xyxy(boxes) * 1000 + boxes = ops.xywh2xyxy(boxes) * 1000 img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) for cls, box in zip(cls[:500], boxes[:500]): ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot @@ -348,12 +348,12 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, if not isinstance(xyxy, torch.Tensor): # may be list xyxy = torch.stack(xyxy) - b = xyxy2xywh(xyxy.view(-1, 4)) # boxes + b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes if square: b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad - xyxy = xywh2xyxy(b).long() - clip_boxes(xyxy, im.shape) + xyxy = ops.xywh2xyxy(b).long() + ops.clip_boxes(xyxy, im.shape) crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] if save: file.parent.mkdir(parents=True, exist_ok=True) # make directory @@ -425,7 +425,7 @@ def plot_images(images, classes = cls[idx].astype('int') if len(bboxes): - boxes = xywh2xyxy(bboxes[idx, :4]).T + boxes = ops.xywh2xyxy(bboxes[idx, :4]).T labels = bboxes.shape[1] == 4 # labels if no conf column conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred) @@ -554,7 +554,7 @@ def output_to_target(output, max_det=300): for i, o in enumerate(output): box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) j = torch.full((conf.shape[0], 1), i) - targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) + targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1)) targets = torch.cat(targets, 0).numpy() return targets[:, 0], targets[:, 1], targets[:, 2:] diff --git a/ultralytics/utils/tal.py b/ultralytics/utils/tal.py index f52518ac..432e7a70 100644 --- a/ultralytics/utils/tal.py +++ b/ultralytics/utils/tal.py @@ -14,7 +14,7 @@ def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): Select the positive anchor center in gt. Args: - xy_centers (Tensor): shape(h*w, 4) + xy_centers (Tensor): shape(h*w, 2) gt_bboxes (Tensor): shape(b, n_boxes, 4) Returns: @@ -228,7 +228,7 @@ class TaskAlignedAssigner(nn.Module): target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w) target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w) - # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w) + # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4) target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx] # Assigned target scores