mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
General refactoring and improvements (#373)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
ac628c0d3e
commit
583eac0e80
1
.github/workflows/cla.yml
vendored
1
.github/workflows/cla.yml
vendored
@ -13,6 +13,7 @@ on:
|
||||
|
||||
jobs:
|
||||
CLA:
|
||||
if: github.repository == 'ultralytics/ultralytics'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "CLA Assistant"
|
||||
|
@ -7,7 +7,7 @@ import requests
|
||||
|
||||
from ultralytics import __version__
|
||||
from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_request
|
||||
from ultralytics.yolo.utils import LOGGER, is_colab, threaded
|
||||
from ultralytics.yolo.utils import is_colab, threaded
|
||||
|
||||
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
|
||||
|
||||
|
@ -32,21 +32,21 @@ class AutoBackend(nn.Module):
|
||||
fp16 (bool): If True, use half precision. Default: False
|
||||
fuse (bool): Whether to fuse the model or not. Default: True
|
||||
|
||||
Supported formats and their usage:
|
||||
Platform | Weights Format
|
||||
-----------------------|------------------
|
||||
PyTorch | *.pt
|
||||
TorchScript | *.torchscript
|
||||
ONNX Runtime | *.onnx
|
||||
ONNX OpenCV DNN | *.onnx --dnn
|
||||
OpenVINO | *.xml
|
||||
CoreML | *.mlmodel
|
||||
TensorRT | *.engine
|
||||
TensorFlow SavedModel | *_saved_model
|
||||
TensorFlow GraphDef | *.pb
|
||||
TensorFlow Lite | *.tflite
|
||||
TensorFlow Edge TPU | *_edgetpu.tflite
|
||||
PaddlePaddle | *_paddle_model
|
||||
Supported formats and their naming conventions:
|
||||
| Format | Suffix |
|
||||
|-----------------------|------------------|
|
||||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx --dnn |
|
||||
| OpenVINO | *.xml |
|
||||
| CoreML | *.mlmodel |
|
||||
| TensorRT | *.engine |
|
||||
| TensorFlow SavedModel | *_saved_model |
|
||||
| TensorFlow GraphDef | *.pb |
|
||||
| TensorFlow Lite | *.tflite |
|
||||
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||||
| PaddlePaddle | *_paddle_model |
|
||||
"""
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
@ -357,7 +357,7 @@ class AutoBackend(nn.Module):
|
||||
This function takes a path to a model file and returns the model type
|
||||
|
||||
Args:
|
||||
p: path to the model file. Defaults to path/to/model.pt
|
||||
p: path to the model file. Defaults to path/to/model.pt
|
||||
"""
|
||||
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||||
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
||||
@ -374,12 +374,11 @@ class AutoBackend(nn.Module):
|
||||
@staticmethod
|
||||
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||||
"""
|
||||
> Loads the metadata from a yaml file
|
||||
Loads the metadata from a yaml file
|
||||
|
||||
Args:
|
||||
f: The path to the metadata file.
|
||||
f: The path to the metadata file.
|
||||
"""
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
|
||||
# Load metadata from meta.yaml if it exists
|
||||
if f.exists():
|
||||
|
@ -5,28 +5,11 @@ Common modules
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import requests
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image, ImageOps
|
||||
from torch.cuda import amp
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.augment import LetterBox
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.yolo.utils.tal import dist2bbox, make_anchors
|
||||
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
||||
|
||||
# from utils.plots import feature_visualization TODO
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
@ -365,216 +348,6 @@ class Concat(nn.Module):
|
||||
return torch.cat(x, self.d)
|
||||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
# YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
agnostic = False # NMS class-agnostic
|
||||
multi_label = False # NMS multiple labels per box
|
||||
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
||||
max_det = 1000 # maximum number of detections per image
|
||||
amp = False # Automatic Mixed Precision (AMP) inference
|
||||
|
||||
def __init__(self, model, verbose=True):
|
||||
super().__init__()
|
||||
if verbose:
|
||||
LOGGER.info('Adding AutoShape... ')
|
||||
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
||||
self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance
|
||||
self.pt = not self.dmb or model.pt # PyTorch model
|
||||
self.model = model.eval()
|
||||
if self.pt:
|
||||
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||
m.inplace = False # Detect.inplace=False for safe multithread inference
|
||||
m.export = True # do not output loss values
|
||||
|
||||
def _apply(self, fn):
|
||||
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||
self = super()._apply(fn)
|
||||
if self.pt:
|
||||
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||
m.stride = fn(m.stride)
|
||||
m.grid = list(map(fn, m.grid))
|
||||
if isinstance(m.anchor_grid, list):
|
||||
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||
return self
|
||||
|
||||
@smart_inference_mode()
|
||||
def forward(self, ims, size=640, augment=False, profile=False):
|
||||
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||||
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||||
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||||
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
||||
# numpy: = np.zeros((640,1280,3)) # HWC
|
||||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
||||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||
|
||||
dt = (Profile(), Profile(), Profile())
|
||||
with dt[0]:
|
||||
if isinstance(size, int): # expand
|
||||
size = (size, size)
|
||||
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||||
if isinstance(ims, torch.Tensor): # torch
|
||||
with amp.autocast(autocast):
|
||||
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||
|
||||
# Pre-process
|
||||
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
||||
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||||
for i, im in enumerate(ims):
|
||||
f = f'image{i}' # filename
|
||||
if isinstance(im, (str, Path)): # filename or uri
|
||||
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
||||
im = np.asarray(ImageOps.exif_transpose(im))
|
||||
elif isinstance(im, Image.Image): # PIL Image
|
||||
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f
|
||||
files.append(Path(f).with_suffix('.jpg').name)
|
||||
if im.shape[0] < 5: # image in CHW
|
||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
||||
s = im.shape[:2] # HWC
|
||||
shape0.append(s) # image shape
|
||||
g = max(size) / max(s) # gain
|
||||
shape1.append([y * g for y in s])
|
||||
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||||
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
|
||||
x = [LetterBox(shape1, auto=False)(image=im)["img"] for im in ims] # pad
|
||||
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||
|
||||
with amp.autocast(autocast):
|
||||
# Inference
|
||||
with dt[1]:
|
||||
y = self.model(x, augment=augment) # forward
|
||||
|
||||
# Post-process
|
||||
with dt[2]:
|
||||
y = non_max_suppression(y if self.dmb else y[0],
|
||||
self.conf,
|
||||
self.iou,
|
||||
self.classes,
|
||||
self.agnostic,
|
||||
self.multi_label,
|
||||
max_det=self.max_det) # NMS
|
||||
for i in range(n):
|
||||
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
||||
|
||||
return Detections(ims, y, files, dt, self.names, x.shape)
|
||||
|
||||
|
||||
class Detections:
|
||||
# YOLOv8 detections class for inference results
|
||||
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
||||
super().__init__()
|
||||
d = pred[0].device # device
|
||||
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
||||
self.ims = ims # list of images as numpy arrays
|
||||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||
self.names = names # class names
|
||||
self.files = files # image filenames
|
||||
self.times = times # profiling times
|
||||
self.xyxy = pred # xyxy pixels
|
||||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||
self.n = len(self.pred) # number of images (batch size)
|
||||
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
||||
self.s = tuple(shape) # inference BCHW shape
|
||||
|
||||
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
||||
s, crops = '', []
|
||||
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
||||
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
||||
if pred.shape[0]:
|
||||
for c in pred[:, -1].unique():
|
||||
n = (pred[:, -1] == c).sum() # detections per class
|
||||
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||
s = s.rstrip(', ')
|
||||
if show or save or render or crop:
|
||||
annotator = Annotator(im, example=str(self.names))
|
||||
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
||||
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||||
if crop:
|
||||
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
||||
crops.append({
|
||||
'box': box,
|
||||
'conf': conf,
|
||||
'cls': cls,
|
||||
'label': label,
|
||||
'im': save_one_box(box, im, file=file, save=save)})
|
||||
else: # all others
|
||||
annotator.box_label(box, label if labels else '', color=colors(cls))
|
||||
im = annotator.im
|
||||
else:
|
||||
s += '(no detections)'
|
||||
|
||||
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
||||
if show:
|
||||
im.show(self.files[i]) # show
|
||||
if save:
|
||||
f = self.files[i]
|
||||
im.save(save_dir / f) # save
|
||||
if i == self.n - 1:
|
||||
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
||||
if render:
|
||||
self.ims[i] = np.asarray(im)
|
||||
if pprint:
|
||||
s = s.lstrip('\n')
|
||||
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
||||
if crop:
|
||||
if save:
|
||||
LOGGER.info(f'Saved results to {save_dir}\n')
|
||||
return crops
|
||||
|
||||
def show(self, labels=True):
|
||||
self._run(show=True, labels=labels) # show results
|
||||
|
||||
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
||||
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
||||
|
||||
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
||||
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
||||
|
||||
def render(self, labels=True):
|
||||
self._run(render=True, labels=labels) # render results
|
||||
return self.ims
|
||||
|
||||
def pandas(self):
|
||||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||||
new = copy(self) # return copy
|
||||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||||
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
||||
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
||||
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
||||
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
||||
return new
|
||||
|
||||
def tolist(self):
|
||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||
r = range(self.n) # iterable
|
||||
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||||
# for d in x:
|
||||
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||
return x
|
||||
|
||||
def print(self):
|
||||
LOGGER.info(self.__str__())
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
return self.n
|
||||
|
||||
def __str__(self): # override print(results)
|
||||
return self._run(pprint=True) # print results
|
||||
|
||||
def __repr__(self):
|
||||
return f'YOLOv8 {self.__class__} instance\n' + self.__str__()
|
||||
|
||||
|
||||
class Proto(nn.Module):
|
||||
# YOLOv8 mask Proto module for segmentation models
|
||||
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||
|
237
ultralytics/nn/results.py
Normal file
237
ultralytics/nn/results.py
Normal file
@ -0,0 +1,237 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
"""
|
||||
Common modules
|
||||
"""
|
||||
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import requests
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image, ImageOps
|
||||
from torch.cuda import amp
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.augment import LetterBox
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
||||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
# YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
agnostic = False # NMS class-agnostic
|
||||
multi_label = False # NMS multiple labels per box
|
||||
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
||||
max_det = 1000 # maximum number of detections per image
|
||||
amp = False # Automatic Mixed Precision (AMP) inference
|
||||
|
||||
def __init__(self, model, verbose=True):
|
||||
super().__init__()
|
||||
if verbose:
|
||||
LOGGER.info('Adding AutoShape... ')
|
||||
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
||||
self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance
|
||||
self.pt = not self.dmb or model.pt # PyTorch model
|
||||
self.model = model.eval()
|
||||
if self.pt:
|
||||
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||
m.inplace = False # Detect.inplace=False for safe multithread inference
|
||||
m.export = True # do not output loss values
|
||||
|
||||
def _apply(self, fn):
|
||||
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||
self = super()._apply(fn)
|
||||
if self.pt:
|
||||
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||
m.stride = fn(m.stride)
|
||||
m.grid = list(map(fn, m.grid))
|
||||
if isinstance(m.anchor_grid, list):
|
||||
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||
return self
|
||||
|
||||
@smart_inference_mode()
|
||||
def forward(self, ims, size=640, augment=False, profile=False):
|
||||
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||||
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||||
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||||
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
||||
# numpy: = np.zeros((640,1280,3)) # HWC
|
||||
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
||||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||
|
||||
dt = (Profile(), Profile(), Profile())
|
||||
with dt[0]:
|
||||
if isinstance(size, int): # expand
|
||||
size = (size, size)
|
||||
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||||
if isinstance(ims, torch.Tensor): # torch
|
||||
with amp.autocast(autocast):
|
||||
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||
|
||||
# Pre-process
|
||||
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
||||
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||||
for i, im in enumerate(ims):
|
||||
f = f'image{i}' # filename
|
||||
if isinstance(im, (str, Path)): # filename or uri
|
||||
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
||||
im = np.asarray(ImageOps.exif_transpose(im))
|
||||
elif isinstance(im, Image.Image): # PIL Image
|
||||
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f
|
||||
files.append(Path(f).with_suffix('.jpg').name)
|
||||
if im.shape[0] < 5: # image in CHW
|
||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
||||
s = im.shape[:2] # HWC
|
||||
shape0.append(s) # image shape
|
||||
g = max(size) / max(s) # gain
|
||||
shape1.append([y * g for y in s])
|
||||
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||||
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
|
||||
x = [LetterBox(shape1, auto=False)(image=im)["img"] for im in ims] # pad
|
||||
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||
|
||||
with amp.autocast(autocast):
|
||||
# Inference
|
||||
with dt[1]:
|
||||
y = self.model(x, augment=augment) # forward
|
||||
|
||||
# Post-process
|
||||
with dt[2]:
|
||||
y = non_max_suppression(y if self.dmb else y[0],
|
||||
self.conf,
|
||||
self.iou,
|
||||
self.classes,
|
||||
self.agnostic,
|
||||
self.multi_label,
|
||||
max_det=self.max_det) # NMS
|
||||
for i in range(n):
|
||||
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
||||
|
||||
return Detections(ims, y, files, dt, self.names, x.shape)
|
||||
|
||||
|
||||
class Detections:
|
||||
# YOLOv8 detections class for inference results
|
||||
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
||||
super().__init__()
|
||||
d = pred[0].device # device
|
||||
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
||||
self.ims = ims # list of images as numpy arrays
|
||||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||
self.names = names # class names
|
||||
self.files = files # image filenames
|
||||
self.times = times # profiling times
|
||||
self.xyxy = pred # xyxy pixels
|
||||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||
self.n = len(self.pred) # number of images (batch size)
|
||||
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
||||
self.s = tuple(shape) # inference BCHW shape
|
||||
|
||||
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
||||
s, crops = '', []
|
||||
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
||||
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
||||
if pred.shape[0]:
|
||||
for c in pred[:, -1].unique():
|
||||
n = (pred[:, -1] == c).sum() # detections per class
|
||||
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||
s = s.rstrip(', ')
|
||||
if show or save or render or crop:
|
||||
annotator = Annotator(im, example=str(self.names))
|
||||
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
||||
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||||
if crop:
|
||||
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
||||
crops.append({
|
||||
'box': box,
|
||||
'conf': conf,
|
||||
'cls': cls,
|
||||
'label': label,
|
||||
'im': save_one_box(box, im, file=file, save=save)})
|
||||
else: # all others
|
||||
annotator.box_label(box, label if labels else '', color=colors(cls))
|
||||
im = annotator.im
|
||||
else:
|
||||
s += '(no detections)'
|
||||
|
||||
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
||||
if show:
|
||||
im.show(self.files[i]) # show
|
||||
if save:
|
||||
f = self.files[i]
|
||||
im.save(save_dir / f) # save
|
||||
if i == self.n - 1:
|
||||
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
||||
if render:
|
||||
self.ims[i] = np.asarray(im)
|
||||
if pprint:
|
||||
s = s.lstrip('\n')
|
||||
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
||||
if crop:
|
||||
if save:
|
||||
LOGGER.info(f'Saved results to {save_dir}\n')
|
||||
return crops
|
||||
|
||||
def show(self, labels=True):
|
||||
self._run(show=True, labels=labels) # show results
|
||||
|
||||
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
||||
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
||||
|
||||
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
||||
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
||||
|
||||
def render(self, labels=True):
|
||||
self._run(render=True, labels=labels) # render results
|
||||
return self.ims
|
||||
|
||||
def pandas(self):
|
||||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||||
new = copy(self) # return copy
|
||||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||||
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
||||
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
||||
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
||||
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
||||
return new
|
||||
|
||||
def tolist(self):
|
||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||
r = range(self.n) # iterable
|
||||
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||||
# for d in x:
|
||||
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||
return x
|
||||
|
||||
def print(self):
|
||||
LOGGER.info(self.__str__())
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
return self.n
|
||||
|
||||
def __str__(self): # override print(results)
|
||||
return self._run(pprint=True) # print results
|
||||
|
||||
def __repr__(self):
|
||||
return f'YOLOv8 {self.__class__} instance\n' + self.__str__()
|
||||
|
||||
|
||||
print('works')
|
@ -57,7 +57,7 @@ class BaseModel(nn.Module):
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
if visualize:
|
||||
pass
|
||||
LOGGER.info('visualize feature not yet supported')
|
||||
# TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||
return x
|
||||
|
||||
@ -106,8 +106,8 @@ class BaseModel(nn.Module):
|
||||
Prints model information
|
||||
|
||||
Args:
|
||||
verbose (bool): if True, prints out the model information. Defaults to False
|
||||
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
|
||||
verbose (bool): if True, prints out the model information. Defaults to False
|
||||
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
|
||||
"""
|
||||
model_info(self, verbose, imgsz)
|
||||
|
||||
@ -117,10 +117,10 @@ class BaseModel(nn.Module):
|
||||
parameters or registered buffers
|
||||
|
||||
Args:
|
||||
fn: the function to apply to the model
|
||||
fn: the function to apply to the model
|
||||
|
||||
Returns:
|
||||
A model that is a Detect() object.
|
||||
A model that is a Detect() object.
|
||||
"""
|
||||
self = super()._apply(fn)
|
||||
m = self.model[-1] # Detect()
|
||||
@ -135,7 +135,7 @@ class BaseModel(nn.Module):
|
||||
This function loads the weights of the model from a file
|
||||
|
||||
Args:
|
||||
weights (str): The weights to load into the model.
|
||||
weights (str): The weights to load into the model.
|
||||
"""
|
||||
# Force all tasks to implement this function
|
||||
raise NotImplementedError("This function needs to be implemented by derived classes!")
|
||||
|
@ -32,7 +32,7 @@ class YOLO:
|
||||
|
||||
def __init__(self, model='yolov8n.yaml', type="v8") -> None:
|
||||
"""
|
||||
> Initializes the YOLO object.
|
||||
Initializes the YOLO object.
|
||||
|
||||
Args:
|
||||
model (str, Path): model to load or create
|
||||
@ -59,7 +59,7 @@ class YOLO:
|
||||
|
||||
def _new(self, cfg: str, verbose=True):
|
||||
"""
|
||||
> Initializes a new model and infers the task type from the model definitions.
|
||||
Initializes a new model and infers the task type from the model definitions.
|
||||
|
||||
Args:
|
||||
cfg (str): model configuration file
|
||||
@ -75,7 +75,7 @@ class YOLO:
|
||||
|
||||
def _load(self, weights: str):
|
||||
"""
|
||||
> Initializes a new model and infers the task type from the model head.
|
||||
Initializes a new model and infers the task type from the model head.
|
||||
|
||||
Args:
|
||||
weights (str): model checkpoint to be loaded
|
||||
@ -90,7 +90,7 @@ class YOLO:
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
> Resets the model modules.
|
||||
Resets the model modules.
|
||||
"""
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, 'reset_parameters'):
|
||||
@ -100,7 +100,7 @@ class YOLO:
|
||||
|
||||
def info(self, verbose=False):
|
||||
"""
|
||||
> Logs model info.
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
verbose (bool): Controls verbosity.
|
||||
@ -133,7 +133,7 @@ class YOLO:
|
||||
@smart_inference_mode()
|
||||
def val(self, data=None, **kwargs):
|
||||
"""
|
||||
> Validate a model on a given dataset .
|
||||
Validate a model on a given dataset .
|
||||
|
||||
Args:
|
||||
data (str): The dataset to validate on. Accepts all formats accepted by yolo
|
||||
@ -152,7 +152,7 @@ class YOLO:
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
> Export model.
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
@ -168,7 +168,7 @@ class YOLO:
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""
|
||||
> Trains the model on a given dataset.
|
||||
Trains the model on a given dataset.
|
||||
|
||||
Args:
|
||||
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
|
||||
@ -197,7 +197,7 @@ class YOLO:
|
||||
|
||||
def to(self, device):
|
||||
"""
|
||||
> Sends the model to the given device.
|
||||
Sends the model to the given device.
|
||||
|
||||
Args:
|
||||
device (str): device
|
||||
|
@ -89,7 +89,7 @@ class BasePredictor:
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.annotator = None
|
||||
self.data_path = None
|
||||
self.output = dict()
|
||||
self.output = {}
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
@ -216,7 +216,7 @@ class BasePredictor:
|
||||
self.run_callbacks("on_predict_end")
|
||||
|
||||
def predict_cli(self, source=None, model=None, return_outputs=False):
|
||||
# as __call__ is a genertor now so have to treat it like a genertor
|
||||
# as __call__ is a generator now so have to treat it like a generator
|
||||
for _ in (self.__call__(source, model, return_outputs)):
|
||||
pass
|
||||
|
||||
|
@ -40,7 +40,7 @@ class BaseTrainer:
|
||||
"""
|
||||
BaseTrainer
|
||||
|
||||
> A base class for creating trainers.
|
||||
A base class for creating trainers.
|
||||
|
||||
Attributes:
|
||||
args (OmegaConf): Configuration for the trainer.
|
||||
@ -75,7 +75,7 @@ class BaseTrainer:
|
||||
|
||||
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
|
||||
"""
|
||||
> Initializes the BaseTrainer class.
|
||||
Initializes the BaseTrainer class.
|
||||
|
||||
Args:
|
||||
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
|
||||
@ -149,13 +149,13 @@ class BaseTrainer:
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
> Appends the given callback.
|
||||
Appends the given callback.
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
> Overrides the existing callbacks with the given callback.
|
||||
Overrides the existing callbacks with the given callback.
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
@ -194,7 +194,7 @@ class BaseTrainer:
|
||||
|
||||
def _setup_train(self, rank, world_size):
|
||||
"""
|
||||
> Builds dataloaders and optimizer on correct rank process.
|
||||
Builds dataloaders and optimizer on correct rank process.
|
||||
"""
|
||||
# model
|
||||
self.run_callbacks("on_pretrain_routine_start")
|
||||
@ -383,13 +383,13 @@ class BaseTrainer:
|
||||
|
||||
def get_dataset(self, data):
|
||||
"""
|
||||
> Get train, val path from data dict if it exists. Returns None if data format is not recognized.
|
||||
Get train, val path from data dict if it exists. Returns None if data format is not recognized.
|
||||
"""
|
||||
return data["train"], data.get("val") or data.get("test")
|
||||
|
||||
def setup_model(self):
|
||||
"""
|
||||
> load/create/download model for any task.
|
||||
load/create/download model for any task.
|
||||
"""
|
||||
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
|
||||
return
|
||||
@ -415,13 +415,13 @@ class BaseTrainer:
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
"""
|
||||
> Allows custom preprocessing model inputs and ground truths depending on task type.
|
||||
Allows custom preprocessing model inputs and ground truths depending on task type.
|
||||
"""
|
||||
return batch
|
||||
|
||||
def validate(self):
|
||||
"""
|
||||
> Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key.
|
||||
Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key.
|
||||
"""
|
||||
metrics = self.validator(self)
|
||||
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
|
||||
@ -431,7 +431,7 @@ class BaseTrainer:
|
||||
|
||||
def log(self, text, rank=-1):
|
||||
"""
|
||||
> Logs the given text to given ranks process if provided, otherwise logs to all ranks.
|
||||
Logs the given text to given ranks process if provided, otherwise logs to all ranks.
|
||||
|
||||
Args"
|
||||
text (str): text to log
|
||||
@ -449,13 +449,13 @@ class BaseTrainer:
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0):
|
||||
"""
|
||||
> Returns dataloader derived from torch.data.Dataloader.
|
||||
Returns dataloader derived from torch.data.Dataloader.
|
||||
"""
|
||||
raise NotImplementedError("get_dataloader function not implemented in trainer")
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
"""
|
||||
> Returns loss and individual loss items as Tensor.
|
||||
Returns loss and individual loss items as Tensor.
|
||||
"""
|
||||
raise NotImplementedError("criterion function not implemented in trainer")
|
||||
|
||||
@ -543,7 +543,7 @@ class BaseTrainer:
|
||||
@staticmethod
|
||||
def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
|
||||
"""
|
||||
> Builds an optimizer with the specified parameters and parameter groups.
|
||||
Builds an optimizer with the specified parameters and parameter groups.
|
||||
|
||||
Args:
|
||||
model (nn.Module): model to optimize
|
||||
|
@ -10,7 +10,7 @@ except (ModuleNotFoundError, ImportError):
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
experiment = comet_ml.Experiment(project_name=trainer.args.project or "YOLOv8",)
|
||||
experiment = comet_ml.Experiment(project_name=trainer.args.project or "YOLOv8")
|
||||
experiment.log_parameters(dict(trainer.args))
|
||||
|
||||
|
||||
|
@ -12,7 +12,7 @@ from zipfile import ZipFile
|
||||
import requests
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils import LOGGER, SETTINGS
|
||||
|
||||
|
||||
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
||||
@ -59,7 +59,11 @@ def attempt_download(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
||||
|
||||
file = Path(str(file).strip().replace("'", ''))
|
||||
if not file.exists():
|
||||
if file.exists():
|
||||
return str(file)
|
||||
elif (SETTINGS['weights_dir'] / file).exists():
|
||||
return str(SETTINGS['weights_dir'] / file)
|
||||
else:
|
||||
# URL specified
|
||||
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||
if str(file).startswith(('http:/', 'https:/')): # download
|
||||
@ -94,7 +98,7 @@ def attempt_download(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
min_bytes=1E5,
|
||||
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
||||
|
||||
return str(file)
|
||||
return str(file)
|
||||
|
||||
|
||||
def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1, retry=3):
|
||||
|
@ -58,10 +58,9 @@ class ClassificationPredictor(BasePredictor):
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def predict(cfg):
|
||||
cfg.model = cfg.model or "squeezenet1_0"
|
||||
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
|
||||
|
||||
predictor = ClassificationPredictor(cfg)
|
||||
predictor.predict_cli()
|
||||
|
||||
|
@ -136,7 +136,7 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-cls.yaml" # or "resnet18"
|
||||
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.lr0 = 0.1
|
||||
cfg.weight_decay = 5e-5
|
||||
@ -151,10 +151,4 @@ def train(cfg):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
yolo task=classify mode=train model=yolov8n-cls.pt data=mnist160 epochs=10 imgsz=32
|
||||
yolo task=classify mode=val model=runs/classify/train/weights/last.pt data=mnist160 imgsz=32
|
||||
yolo task=classify mode=predict model=runs/classify/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
|
||||
yolo mode=export model=runs/classify/train/weights/last.pt imgsz=32 format=torchscript
|
||||
"""
|
||||
train()
|
||||
|
@ -48,8 +48,8 @@ class ClassificationValidator(BaseValidator):
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def val(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
cfg.data = cfg.data or "imagenette160"
|
||||
cfg.model = cfg.model or "resnet18"
|
||||
validator = ClassificationValidator(args=cfg)
|
||||
validator(model=cfg.model)
|
||||
|
||||
|
@ -197,7 +197,7 @@ class Loss:
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n.yaml"
|
||||
cfg.model = cfg.model or "yolov8n.pt"
|
||||
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = DetectionTrainer(cfg)
|
||||
@ -208,11 +208,4 @@ def train(cfg):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/detect/train.py model=yolov8n.yaml data=coco128 epochs=100 imgsz=640
|
||||
|
||||
TODO:
|
||||
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
|
||||
"""
|
||||
train()
|
||||
|
@ -234,6 +234,7 @@ class DetectionValidator(BaseValidator):
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def val(cfg):
|
||||
cfg.model = cfg.model or "yolov8n.pt"
|
||||
cfg.data = cfg.data or "coco128.yaml"
|
||||
validator = DetectionValidator(args=cfg)
|
||||
validator(model=cfg.model)
|
||||
|
@ -143,7 +143,7 @@ class SegLoss(Loss):
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-seg.yaml"
|
||||
cfg.model = cfg.model or "yolov8n-seg.pt"
|
||||
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = SegmentationTrainer(cfg)
|
||||
@ -154,11 +154,4 @@ def train(cfg):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/segment/train.py model=yolov8n-seg.yaml data=coco128-segments epochs=100 imgsz=640
|
||||
|
||||
TODO:
|
||||
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
||||
"""
|
||||
train()
|
||||
|
@ -114,8 +114,9 @@ class SegmentationValidator(DetectionValidator):
|
||||
masks=True)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:,
|
||||
5], cls.squeeze(-1))) # conf, pcls, tcls
|
||||
|
||||
# Append correct_masks, correct_boxes, pconf, pcls, tcls
|
||||
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if self.args.plots and self.batch_i < 3:
|
||||
|
Loading…
x
Reference in New Issue
Block a user