mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-22 21:04:21 +08:00
update app.py
This commit is contained in:
parent
a6e064d331
commit
587981fc27
10
README.md
10
README.md
@ -11,7 +11,7 @@ Official PyTorch implementation of **YOLOv10**.
|
||||
|
||||
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458).\
|
||||
Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding\
|
||||
[](https://arxiv.org/abs/2405.14458) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) [](https://huggingface.co/spaces/kadirnar/Yolov10) [](https://huggingface.co/spaces/Xenova/yolov10-web)
|
||||
[](https://arxiv.org/abs/2405.14458) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) [](https://huggingface.co/spaces/jameslahm/YOLOv10) [](https://huggingface.co/spaces/kadirnar/Yolov10) [](https://huggingface.co/spaces/Xenova/yolov10-web)
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
@ -23,7 +23,7 @@ Over the past years, YOLOs have emerged as the predominant paradigm in the field
|
||||
## Notes
|
||||
- 2024/05/31: Please use the [exported format](https://github.com/THU-MIG/yolov10?tab=readme-ov-file#export) for benchmark. In the non-exported format, e.g., pytorch, the speed of YOLOv10 is biased because the unnecessary `cv2` and `cv3` operations in the `v10Detect` are executed during inference.
|
||||
- 2024/05/30: We provide [some clarifications and suggestions](https://github.com/THU-MIG/yolov10/issues/136) for detecting smaller objects or objects in the distance with YOLOv10. Thanks to [SkalskiP](https://github.com/SkalskiP)!
|
||||
- 2024/05/27: We have updated the [checkpoints](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) with other attributes, like class names and training args, for ease of use.
|
||||
- 2024/05/27: We have updated the [checkpoints](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) with class names, for ease of use.
|
||||
|
||||
## UPDATES 🔥
|
||||
- 2024/06/01: Thanks to [ErlanggaYudiPradana](https://github.com/rlggyp) for the integration with [C++ | OpenVINO | OpenCV](https://github.com/rlggyp/YOLOv10-OpenVINO-CPP-Inference)
|
||||
@ -97,12 +97,10 @@ model = YOLOv10()
|
||||
# If you want to finetune the model with pretrained weights, you could load the
|
||||
# pretrained weights like below
|
||||
# model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
|
||||
# Or
|
||||
# or
|
||||
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
|
||||
|
||||
model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640)
|
||||
# Note that you can upload your trained model to HuggingFace Hub like below
|
||||
# model.push_to_hub("reponame", config={"model": "yolov10n/s/m/b/l/x.yaml"})
|
||||
```
|
||||
|
||||
## Push to hub to 🤗
|
||||
@ -143,7 +141,7 @@ yolo predict model=yolov10n/s/m/b/l/x.onnx
|
||||
|
||||
# End-to-End TensorRT
|
||||
yolo export model=yolov10n/s/m/b/l/x.pt format=engine half=True simplify opset=13 workspace=16
|
||||
# Or
|
||||
# or
|
||||
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
|
||||
# Predict with TensorRT
|
||||
yolo predict model=yolov10n/s/m/b/l/x.engine
|
||||
|
66
app.py
66
app.py
@ -1,15 +1,23 @@
|
||||
# Ackownledgement: https://huggingface.co/spaces/kadirnar/Yolov10/blob/main/app.py
|
||||
# Thanks to @kadirnar
|
||||
|
||||
import PIL.Image as Image
|
||||
import gradio as gr
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
def yolov10_inference(image, image_size, conf_threshold):
|
||||
model = YOLOv10.from_pretrained("jameslahm/yolov10n")
|
||||
|
||||
model.predict(source=image, imgsz=image_size, conf=conf_threshold, save=True)
|
||||
|
||||
return model.predictor.plotted_img[:, :, ::-1]
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
def predict_image(img, model_id, image_size, conf_threshold):
|
||||
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
||||
results = model.predict(
|
||||
source=img,
|
||||
conf=conf_threshold,
|
||||
show_labels=True,
|
||||
show_conf=True,
|
||||
imgsz=image_size,
|
||||
)
|
||||
|
||||
for r in results:
|
||||
im_array = r.plot()
|
||||
im = Image.fromarray(im_array[..., ::-1])
|
||||
|
||||
return im
|
||||
|
||||
def app():
|
||||
with gr.Blocks():
|
||||
@ -20,14 +28,14 @@ def app():
|
||||
model_id = gr.Dropdown(
|
||||
label="Model",
|
||||
choices=[
|
||||
"yolov10n.pt",
|
||||
"yolov10s.pt",
|
||||
"yolov10m.pt",
|
||||
"yolov10b.pt",
|
||||
"yolov10l.pt",
|
||||
"yolov10x.pt",
|
||||
"yolov10n",
|
||||
"yolov10s",
|
||||
"yolov10m",
|
||||
"yolov10b",
|
||||
"yolov10l",
|
||||
"yolov10x",
|
||||
],
|
||||
value="yolov10s.pt",
|
||||
value="yolov10m",
|
||||
)
|
||||
image_size = gr.Slider(
|
||||
label="Image Size",
|
||||
@ -40,16 +48,16 @@ def app():
|
||||
label="Confidence Threshold",
|
||||
minimum=0.0,
|
||||
maximum=1.0,
|
||||
step=0.1,
|
||||
step=0.05,
|
||||
value=0.25,
|
||||
)
|
||||
yolov10_infer = gr.Button(value="Detect Objects")
|
||||
|
||||
with gr.Column():
|
||||
output_image = gr.Image(type="numpy", label="Annotated Image")
|
||||
output_image = gr.Image(type="pil", label="Annotated Image")
|
||||
|
||||
yolov10_infer.click(
|
||||
fn=yolov10_inference,
|
||||
fn=predict_image,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
@ -63,18 +71,18 @@ def app():
|
||||
examples=[
|
||||
[
|
||||
"ultralytics/assets/bus.jpg",
|
||||
"yolov10s.pt",
|
||||
"yolov10s",
|
||||
640,
|
||||
0.25,
|
||||
],
|
||||
[
|
||||
"ultralytics/assets/zidane.jpg",
|
||||
"yolov10s.pt",
|
||||
"yolov10s",
|
||||
640,
|
||||
0.25,
|
||||
],
|
||||
],
|
||||
fn=yolov10_inference,
|
||||
fn=predict_image,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
@ -82,7 +90,7 @@ def app():
|
||||
conf_threshold,
|
||||
],
|
||||
outputs=[output_image],
|
||||
cache_examples=True,
|
||||
cache_examples='lazy',
|
||||
)
|
||||
|
||||
gradio_app = gr.Blocks()
|
||||
@ -93,8 +101,14 @@ with gradio_app:
|
||||
YOLOv10: Real-Time End-to-End Object Detection
|
||||
</h1>
|
||||
""")
|
||||
gr.HTML(
|
||||
"""
|
||||
<h3 style='text-align: center'>
|
||||
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
||||
</h3>
|
||||
""")
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
app()
|
||||
|
||||
gradio_app.launch(debug=True)
|
||||
if __name__ == '__main__':
|
||||
gradio_app.launch()
|
Loading…
x
Reference in New Issue
Block a user