update app.py

This commit is contained in:
wa22 2024-06-03 10:50:08 +08:00
parent a6e064d331
commit 587981fc27
2 changed files with 44 additions and 32 deletions

View File

@ -11,7 +11,7 @@ Official PyTorch implementation of **YOLOv10**.
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458).\ [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458).\
Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding\ Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding\
[![arXiv](https://img.shields.io/badge/arXiv-2405.14458-b31b1b.svg)](https://arxiv.org/abs/2405.14458) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov10) [![Transformers.js Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Transformers.js-blue)](https://huggingface.co/spaces/Xenova/yolov10-web) [![arXiv](https://img.shields.io/badge/arXiv-2405.14458-b31b1b.svg)](https://arxiv.org/abs/2405.14458) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/jameslahm/YOLOv10) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov10) [![Transformers.js Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Transformers.js-blue)](https://huggingface.co/spaces/Xenova/yolov10-web)
<details> <details>
<summary> <summary>
@ -23,7 +23,7 @@ Over the past years, YOLOs have emerged as the predominant paradigm in the field
## Notes ## Notes
- 2024/05/31: Please use the [exported format](https://github.com/THU-MIG/yolov10?tab=readme-ov-file#export) for benchmark. In the non-exported format, e.g., pytorch, the speed of YOLOv10 is biased because the unnecessary `cv2` and `cv3` operations in the `v10Detect` are executed during inference. - 2024/05/31: Please use the [exported format](https://github.com/THU-MIG/yolov10?tab=readme-ov-file#export) for benchmark. In the non-exported format, e.g., pytorch, the speed of YOLOv10 is biased because the unnecessary `cv2` and `cv3` operations in the `v10Detect` are executed during inference.
- 2024/05/30: We provide [some clarifications and suggestions](https://github.com/THU-MIG/yolov10/issues/136) for detecting smaller objects or objects in the distance with YOLOv10. Thanks to [SkalskiP](https://github.com/SkalskiP)! - 2024/05/30: We provide [some clarifications and suggestions](https://github.com/THU-MIG/yolov10/issues/136) for detecting smaller objects or objects in the distance with YOLOv10. Thanks to [SkalskiP](https://github.com/SkalskiP)!
- 2024/05/27: We have updated the [checkpoints](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) with other attributes, like class names and training args, for ease of use. - 2024/05/27: We have updated the [checkpoints](https://huggingface.co/collections/jameslahm/yolov10-665b0d90b0b5bb85129460c2) with class names, for ease of use.
## UPDATES 🔥 ## UPDATES 🔥
- 2024/06/01: Thanks to [ErlanggaYudiPradana](https://github.com/rlggyp) for the integration with [C++ | OpenVINO | OpenCV](https://github.com/rlggyp/YOLOv10-OpenVINO-CPP-Inference) - 2024/06/01: Thanks to [ErlanggaYudiPradana](https://github.com/rlggyp) for the integration with [C++ | OpenVINO | OpenCV](https://github.com/rlggyp/YOLOv10-OpenVINO-CPP-Inference)
@ -97,12 +97,10 @@ model = YOLOv10()
# If you want to finetune the model with pretrained weights, you could load the # If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below # pretrained weights like below
# model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') # model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
# Or # or
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640) model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640)
# Note that you can upload your trained model to HuggingFace Hub like below
# model.push_to_hub("reponame", config={"model": "yolov10n/s/m/b/l/x.yaml"})
``` ```
## Push to hub to 🤗 ## Push to hub to 🤗
@ -143,7 +141,7 @@ yolo predict model=yolov10n/s/m/b/l/x.onnx
# End-to-End TensorRT # End-to-End TensorRT
yolo export model=yolov10n/s/m/b/l/x.pt format=engine half=True simplify opset=13 workspace=16 yolo export model=yolov10n/s/m/b/l/x.pt format=engine half=True simplify opset=13 workspace=16
# Or # or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16 trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT # Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine yolo predict model=yolov10n/s/m/b/l/x.engine

66
app.py
View File

@ -1,15 +1,23 @@
# Ackownledgement: https://huggingface.co/spaces/kadirnar/Yolov10/blob/main/app.py import PIL.Image as Image
# Thanks to @kadirnar
import gradio as gr import gradio as gr
from ultralytics import YOLOv10
def yolov10_inference(image, image_size, conf_threshold): from ultralytics import YOLOv10
model = YOLOv10.from_pretrained("jameslahm/yolov10n")
def predict_image(img, model_id, image_size, conf_threshold):
model.predict(source=image, imgsz=image_size, conf=conf_threshold, save=True) model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
results = model.predict(
return model.predictor.plotted_img[:, :, ::-1] source=img,
conf=conf_threshold,
show_labels=True,
show_conf=True,
imgsz=image_size,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
def app(): def app():
with gr.Blocks(): with gr.Blocks():
@ -20,14 +28,14 @@ def app():
model_id = gr.Dropdown( model_id = gr.Dropdown(
label="Model", label="Model",
choices=[ choices=[
"yolov10n.pt", "yolov10n",
"yolov10s.pt", "yolov10s",
"yolov10m.pt", "yolov10m",
"yolov10b.pt", "yolov10b",
"yolov10l.pt", "yolov10l",
"yolov10x.pt", "yolov10x",
], ],
value="yolov10s.pt", value="yolov10m",
) )
image_size = gr.Slider( image_size = gr.Slider(
label="Image Size", label="Image Size",
@ -40,16 +48,16 @@ def app():
label="Confidence Threshold", label="Confidence Threshold",
minimum=0.0, minimum=0.0,
maximum=1.0, maximum=1.0,
step=0.1, step=0.05,
value=0.25, value=0.25,
) )
yolov10_infer = gr.Button(value="Detect Objects") yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column(): with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image") output_image = gr.Image(type="pil", label="Annotated Image")
yolov10_infer.click( yolov10_infer.click(
fn=yolov10_inference, fn=predict_image,
inputs=[ inputs=[
image, image,
model_id, model_id,
@ -63,18 +71,18 @@ def app():
examples=[ examples=[
[ [
"ultralytics/assets/bus.jpg", "ultralytics/assets/bus.jpg",
"yolov10s.pt", "yolov10s",
640, 640,
0.25, 0.25,
], ],
[ [
"ultralytics/assets/zidane.jpg", "ultralytics/assets/zidane.jpg",
"yolov10s.pt", "yolov10s",
640, 640,
0.25, 0.25,
], ],
], ],
fn=yolov10_inference, fn=predict_image,
inputs=[ inputs=[
image, image,
model_id, model_id,
@ -82,7 +90,7 @@ def app():
conf_threshold, conf_threshold,
], ],
outputs=[output_image], outputs=[output_image],
cache_examples=True, cache_examples='lazy',
) )
gradio_app = gr.Blocks() gradio_app = gr.Blocks()
@ -93,8 +101,14 @@ with gradio_app:
YOLOv10: Real-Time End-to-End Object Detection YOLOv10: Real-Time End-to-End Object Detection
</h1> </h1>
""") """)
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
</h3>
""")
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
app() app()
if __name__ == '__main__':
gradio_app.launch(debug=True) gradio_app.launch()