diff --git a/run_pgt_train.py b/run_pgt_train.py index aa431ca9..9cb6df48 100644 --- a/run_pgt_train.py +++ b/run_pgt_train.py @@ -3,6 +3,7 @@ from ultralytics import YOLOv10, YOLO import os from ultralytics.models.yolo.segment import PGTSegmentationTrainer import argparse +from datetime import datetime def main(args): @@ -15,7 +16,7 @@ def main(args): # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt model = YOLOv10('yolov10n.pt', task='segment') - args = dict(model='yolov10n.pt', data='coco128-seg.yaml', + args = dict(model='yolov10n.pt', data=args.data_yaml, epochs=args.epochs, batch=args.batch_size, # cfg = 'pgt_train.yaml', # This can be edited for full control of the training process ) @@ -25,8 +26,16 @@ def main(args): # args = dict(pgt_coeff=0.1), # Should add later to config ) - # Save the trained model - model.save('yolov10_coco_trained.pt') + # Create a directory to save model weights if it doesn't exist + model_weights_dir = 'model_weights' + if not os.path.exists(model_weights_dir): + os.makedirs(model_weights_dir) + + # Save the trained model with a unique name based on the current date and time + current_time = datetime.now().strftime('%Y%m%d_%H%M%S') + data_yaml_base = os.path.splitext(os.path.basename(args.data_yaml))[0] + model_save_path = os.path.join(model_weights_dir, f'yolov10_{data_yaml_base}_trained_{current_time}.pt') + model.save(model_save_path) # Evaluate the model on the validation set results = model.val(data='coco.yaml') @@ -39,6 +48,7 @@ if __name__ == "__main__": parser.add_argument('--device', type=str, default='0', help='CUDA device number') parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training') parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training') + parser.add_argument('--data_yaml', type=str, required=True, default='coco.yaml', help='Path to the data YAML file') args = parser.parse_args() # Set CUDA device (only needed for multi-gpu machines)