mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Add global settings.yaml
in USER_CONFIG_DIR
(#125)
This commit is contained in:
parent
a9b9fe7618
commit
598f17a472
@ -37,4 +37,23 @@ For more information about the history and development of YOLO, you can refer to
|
||||
|
||||
- Redmon, J., & Farhadi, A. (2015). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
|
||||
conference on computer vision and pattern recognition (pp. 779-788).
|
||||
- Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. In Proceedings
|
||||
- Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. In Proceedings
|
||||
|
||||
### YOLOv8 by Ultralytics
|
||||
|
||||
YOLOv8 is the latest version of the YOLO object detection and image segmentation model developed by
|
||||
Ultralytics. YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO
|
||||
versions and introduces new features and improvements to further boost performance and flexibility.
|
||||
|
||||
One key feature of YOLOv8 is its extensibility. It is designed as a framework that supports all previous versions of
|
||||
YOLO, making it easy to switch between different versions and compare their performance. This makes YOLOv8 an ideal
|
||||
choice for users who want to take advantage of the latest YOLO technology while still being able to use their existing
|
||||
YOLO models.
|
||||
|
||||
In addition to its extensibility, YOLOv8 includes a number of other innovations that make it an appealing choice for a
|
||||
wide range of object detection and image segmentation tasks. These include a new backbone network, a new anchor-free
|
||||
detection head, and a new loss function. YOLOv8 is also highly efficient and can be run on a variety of hardware
|
||||
platforms, from CPUs to GPUs.
|
||||
|
||||
Overall, YOLOv8 is a powerful and flexible tool for object detection and image segmentation that offers the best of both
|
||||
worlds: the latest SOTA technology and the ability to use and compare all previous YOLO versions.
|
@ -10,10 +10,9 @@ import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
||||
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
|
||||
|
||||
|
@ -10,9 +10,8 @@ import torchvision
|
||||
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
|
||||
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
|
||||
GhostBottleneck, GhostConv, Segment)
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
||||
from ultralytics.yolo.utils import LOGGER, colorstr, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts,
|
||||
make_divisible, model_info, scale_img, time_sync)
|
||||
|
||||
|
@ -6,13 +6,19 @@ from omegaconf import DictConfig, OmegaConf
|
||||
from ultralytics.yolo.configs.hydra_patch import check_config_mismatch
|
||||
|
||||
|
||||
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
|
||||
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = None):
|
||||
"""
|
||||
Accepts yaml file name or DictConfig containing experiment configuration.
|
||||
Returns training args namespace
|
||||
:param overrides: Overrides str or Dict
|
||||
:param config: Optional file name or DictConfig object
|
||||
Load and merge configuration data from a file or dictionary.
|
||||
|
||||
Args:
|
||||
config (Union[str, DictConfig]): Configuration data in the form of a file name or a DictConfig object.
|
||||
overrides (Union[str, Dict], optional): Overrides in the form of a file name or a dictionary. Default is None.
|
||||
|
||||
Returns:
|
||||
OmegaConf.Namespace: Training arguments namespace.
|
||||
"""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
if isinstance(config, (str, Path)):
|
||||
config = OmegaConf.load(config)
|
||||
elif isinstance(config, Dict):
|
||||
|
@ -91,7 +91,7 @@ class BaseDataset(Dataset):
|
||||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
||||
assert im_files, f"{self.prefix}No images found"
|
||||
except Exception as e:
|
||||
raise Exception(f"{self.prefix}Error loading data from {img_path}: {e}\n{HELP_URL}")
|
||||
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}: {e}\n{HELP_URL}") from e
|
||||
return im_files
|
||||
|
||||
def update_labels(self, include_class: Optional[list]):
|
||||
|
@ -484,7 +484,7 @@ class LoadImagesAndLabels(Dataset):
|
||||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
||||
assert self.im_files, f'{prefix}No images found'
|
||||
except Exception as e:
|
||||
raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
||||
raise FileNotFoundError(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
||||
|
||||
# Check cache
|
||||
self.label_files = img2label_paths(self.im_files) # labels
|
||||
|
@ -12,10 +12,10 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import ExifTags, Image, ImageOps
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
|
||||
from ultralytics.yolo.utils.downloads import download
|
||||
from ultralytics.yolo.utils.files import unzip_file, yaml_load
|
||||
from ultralytics.yolo.utils.files import unzip_file
|
||||
|
||||
from ..utils.ops import segments2boxes
|
||||
|
||||
|
@ -70,9 +70,9 @@ from ultralytics.nn.tasks import ClassificationModel, DetectionModel, Segmentati
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import check_dataset
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args, yaml_save
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save
|
||||
from ultralytics.yolo.utils.files import file_size, increment_path
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
|
||||
|
||||
@ -198,7 +198,7 @@ class Exporter:
|
||||
self.im = im
|
||||
self.model = model
|
||||
self.file = file
|
||||
self.output_shape = tuple(y.shape)
|
||||
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y)
|
||||
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||||
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
||||
|
||||
|
@ -4,9 +4,8 @@ from ultralytics import yolo # noqa
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
|
||||
|
||||
# Map head to model, trainer, validator, and predictor classes
|
||||
|
@ -25,10 +25,10 @@ import ultralytics.yolo.utils.callbacks as callbacks
|
||||
from ultralytics import __version__
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr, yaml_save
|
||||
from ultralytics.yolo.utils.checks import check_file, print_args
|
||||
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
|
||||
from ultralytics.yolo.utils.files import get_latest_run, increment_path, yaml_save
|
||||
from ultralytics.yolo.utils.files import get_latest_run, increment_path
|
||||
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
|
||||
|
||||
|
||||
|
@ -10,6 +10,7 @@ from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import pandas as pd
|
||||
import yaml
|
||||
|
||||
# Constants
|
||||
FILE = Path(__file__).resolve()
|
||||
@ -224,13 +225,6 @@ def set_logging(name=LOGGING_NAME, verbose=True):
|
||||
"propagate": False,}}})
|
||||
|
||||
|
||||
set_logging(LOGGING_NAME) # run before defining LOGGER
|
||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
||||
if platform.system() == 'Windows':
|
||||
for fn in LOGGER.info, LOGGER.warning:
|
||||
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
||||
|
||||
|
||||
class TryExcept(contextlib.ContextDecorator):
|
||||
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||
def __init__(self, msg=''):
|
||||
@ -253,3 +247,82 @@ def threaded(func):
|
||||
return thread
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||
"""
|
||||
Function that loads a global settings YAML, or creates it and populates it with default values if it does not exist.
|
||||
|
||||
If the datasets or weights directories are set to None, the current working directory will be used.
|
||||
The 'sync' setting determines whether analytics will be synced to help with YOLO development.
|
||||
"""
|
||||
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
with torch_distributed_zero_first(RANK):
|
||||
if not file.exists():
|
||||
settings = {
|
||||
'datasets_dir': None, # default datasets directory. If None, current working directory is used.
|
||||
'weights_dir': None, # default weights directory. If None, current working directory is used.
|
||||
'sync': True} # sync analytics to help with YOLO development
|
||||
yaml_save(file, settings)
|
||||
|
||||
return yaml_load(file)
|
||||
|
||||
|
||||
def yaml_save(file='data.yaml', data=None):
|
||||
"""
|
||||
Save YAML data to a file.
|
||||
|
||||
Args:
|
||||
file (str, optional): File name. Default is 'data.yaml'.
|
||||
data (dict, optional): Data to save in YAML format. Default is None.
|
||||
|
||||
Returns:
|
||||
None: Data is saved to the specified file.
|
||||
"""
|
||||
file = Path(file)
|
||||
if not file.parent.exists():
|
||||
# Create parent directories if they don't exist
|
||||
file.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with open(file, 'w') as f:
|
||||
# Dump data to file in YAML format, converting Path objects to strings
|
||||
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
||||
|
||||
|
||||
def yaml_load(file='data.yaml'):
|
||||
"""
|
||||
Load YAML data from a file.
|
||||
|
||||
Args:
|
||||
file (str, optional): File name. Default is 'data.yaml'.
|
||||
|
||||
Returns:
|
||||
dict: YAML data and file name.
|
||||
"""
|
||||
with open(file, errors='ignore') as f:
|
||||
# Add YAML filename to dict and return
|
||||
return {**yaml.safe_load(f), 'yaml_file': file}
|
||||
|
||||
|
||||
# Run below code on utils init -----------------------------------------------------------------------------------------
|
||||
|
||||
# Set logger
|
||||
set_logging(LOGGING_NAME) # run before defining LOGGER
|
||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
||||
if platform.system() == 'Windows':
|
||||
for fn in LOGGER.info, LOGGER.warning:
|
||||
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
||||
|
||||
# Check first-install steps
|
||||
SETTINGS = get_settings()
|
||||
|
||||
|
||||
def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||
"""
|
||||
Function that runs on a first-time ultralytics package installation to set up global settings and create necessary
|
||||
directories.
|
||||
"""
|
||||
SETTINGS.update(kwargs)
|
||||
|
||||
yaml_save(file, SETTINGS)
|
||||
|
@ -6,8 +6,6 @@ from datetime import datetime
|
||||
from pathlib import Path
|
||||
from zipfile import ZipFile
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
class WorkingDirectory(contextlib.ContextDecorator):
|
||||
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
||||
@ -57,18 +55,6 @@ def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
||||
return path
|
||||
|
||||
|
||||
def yaml_save(file='data.yaml', data=None):
|
||||
# Single-line safe yaml saving
|
||||
with open(file, 'w') as f:
|
||||
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
||||
|
||||
|
||||
def yaml_load(file='data.yaml'):
|
||||
# Single-line safe yaml loading
|
||||
with open(file, errors='ignore') as f:
|
||||
return {**yaml.safe_load(f), 'yaml_file': file} # add YAML filename to dict and return
|
||||
|
||||
|
||||
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
||||
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
||||
if path is None:
|
||||
|
@ -162,13 +162,15 @@ class Bboxes:
|
||||
|
||||
class Instances:
|
||||
|
||||
def __init__(self, bboxes, segments=[], keypoints=None, bbox_format="xywh", normalized=True) -> None:
|
||||
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
|
||||
"""
|
||||
Args:
|
||||
bboxes (ndarray): bboxes with shape [N, 4].
|
||||
segments (list | ndarray): segments.
|
||||
keypoints (ndarray): keypoints with shape [N, 17, 2].
|
||||
"""
|
||||
if segments is None:
|
||||
segments = []
|
||||
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
|
||||
self.keypoints = keypoints
|
||||
self.normalized = normalized
|
||||
|
@ -8,9 +8,8 @@ import torch
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
Loading…
x
Reference in New Issue
Block a user