mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Add global settings.yaml
in USER_CONFIG_DIR
(#125)
This commit is contained in:
parent
a9b9fe7618
commit
598f17a472
@ -38,3 +38,22 @@ For more information about the history and development of YOLO, you can refer to
|
|||||||
- Redmon, J., & Farhadi, A. (2015). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
|
- Redmon, J., & Farhadi, A. (2015). You only look once: Unified, real-time object detection. In Proceedings of the IEEE
|
||||||
conference on computer vision and pattern recognition (pp. 779-788).
|
conference on computer vision and pattern recognition (pp. 779-788).
|
||||||
- Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. In Proceedings
|
- Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. In Proceedings
|
||||||
|
|
||||||
|
### YOLOv8 by Ultralytics
|
||||||
|
|
||||||
|
YOLOv8 is the latest version of the YOLO object detection and image segmentation model developed by
|
||||||
|
Ultralytics. YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO
|
||||||
|
versions and introduces new features and improvements to further boost performance and flexibility.
|
||||||
|
|
||||||
|
One key feature of YOLOv8 is its extensibility. It is designed as a framework that supports all previous versions of
|
||||||
|
YOLO, making it easy to switch between different versions and compare their performance. This makes YOLOv8 an ideal
|
||||||
|
choice for users who want to take advantage of the latest YOLO technology while still being able to use their existing
|
||||||
|
YOLO models.
|
||||||
|
|
||||||
|
In addition to its extensibility, YOLOv8 includes a number of other innovations that make it an appealing choice for a
|
||||||
|
wide range of object detection and image segmentation tasks. These include a new backbone network, a new anchor-free
|
||||||
|
detection head, and a new loss function. YOLOv8 is also highly efficient and can be run on a variety of hardware
|
||||||
|
platforms, from CPUs to GPUs.
|
||||||
|
|
||||||
|
Overall, YOLOv8 is a powerful and flexible tool for object detection and image segmentation that offers the best of both
|
||||||
|
worlds: the latest SOTA technology and the ability to use and compare all previous YOLO versions.
|
@ -10,10 +10,9 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
from ultralytics.yolo.utils import LOGGER, ROOT
|
from ultralytics.yolo.utils import LOGGER, ROOT, yaml_load
|
||||||
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
||||||
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
||||||
from ultralytics.yolo.utils.files import yaml_load
|
|
||||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||||
|
|
||||||
|
|
||||||
|
@ -10,9 +10,8 @@ import torchvision
|
|||||||
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
|
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
|
||||||
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
|
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
|
||||||
GhostBottleneck, GhostConv, Segment)
|
GhostBottleneck, GhostConv, Segment)
|
||||||
from ultralytics.yolo.utils import LOGGER, colorstr
|
from ultralytics.yolo.utils import LOGGER, colorstr, yaml_load
|
||||||
from ultralytics.yolo.utils.checks import check_yaml
|
from ultralytics.yolo.utils.checks import check_yaml
|
||||||
from ultralytics.yolo.utils.files import yaml_load
|
|
||||||
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts,
|
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts,
|
||||||
make_divisible, model_info, scale_img, time_sync)
|
make_divisible, model_info, scale_img, time_sync)
|
||||||
|
|
||||||
|
@ -6,13 +6,19 @@ from omegaconf import DictConfig, OmegaConf
|
|||||||
from ultralytics.yolo.configs.hydra_patch import check_config_mismatch
|
from ultralytics.yolo.configs.hydra_patch import check_config_mismatch
|
||||||
|
|
||||||
|
|
||||||
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
|
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = None):
|
||||||
"""
|
"""
|
||||||
Accepts yaml file name or DictConfig containing experiment configuration.
|
Load and merge configuration data from a file or dictionary.
|
||||||
Returns training args namespace
|
|
||||||
:param overrides: Overrides str or Dict
|
Args:
|
||||||
:param config: Optional file name or DictConfig object
|
config (Union[str, DictConfig]): Configuration data in the form of a file name or a DictConfig object.
|
||||||
|
overrides (Union[str, Dict], optional): Overrides in the form of a file name or a dictionary. Default is None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
OmegaConf.Namespace: Training arguments namespace.
|
||||||
"""
|
"""
|
||||||
|
if overrides is None:
|
||||||
|
overrides = {}
|
||||||
if isinstance(config, (str, Path)):
|
if isinstance(config, (str, Path)):
|
||||||
config = OmegaConf.load(config)
|
config = OmegaConf.load(config)
|
||||||
elif isinstance(config, Dict):
|
elif isinstance(config, Dict):
|
||||||
|
@ -91,7 +91,7 @@ class BaseDataset(Dataset):
|
|||||||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
||||||
assert im_files, f"{self.prefix}No images found"
|
assert im_files, f"{self.prefix}No images found"
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise Exception(f"{self.prefix}Error loading data from {img_path}: {e}\n{HELP_URL}")
|
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}: {e}\n{HELP_URL}") from e
|
||||||
return im_files
|
return im_files
|
||||||
|
|
||||||
def update_labels(self, include_class: Optional[list]):
|
def update_labels(self, include_class: Optional[list]):
|
||||||
|
@ -484,7 +484,7 @@ class LoadImagesAndLabels(Dataset):
|
|||||||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
||||||
assert self.im_files, f'{prefix}No images found'
|
assert self.im_files, f'{prefix}No images found'
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
raise FileNotFoundError(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
||||||
|
|
||||||
# Check cache
|
# Check cache
|
||||||
self.label_files = img2label_paths(self.im_files) # labels
|
self.label_files = img2label_paths(self.im_files) # labels
|
||||||
|
@ -12,10 +12,10 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
from PIL import ExifTags, Image, ImageOps
|
from PIL import ExifTags, Image, ImageOps
|
||||||
|
|
||||||
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr
|
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, yaml_load
|
||||||
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
|
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
|
||||||
from ultralytics.yolo.utils.downloads import download
|
from ultralytics.yolo.utils.downloads import download
|
||||||
from ultralytics.yolo.utils.files import unzip_file, yaml_load
|
from ultralytics.yolo.utils.files import unzip_file
|
||||||
|
|
||||||
from ..utils.ops import segments2boxes
|
from ..utils.ops import segments2boxes
|
||||||
|
|
||||||
|
@ -70,9 +70,9 @@ from ultralytics.nn.tasks import ClassificationModel, DetectionModel, Segmentati
|
|||||||
from ultralytics.yolo.configs import get_config
|
from ultralytics.yolo.configs import get_config
|
||||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||||
from ultralytics.yolo.data.utils import check_dataset
|
from ultralytics.yolo.data.utils import check_dataset
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args, yaml_save
|
||||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||||
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save
|
from ultralytics.yolo.utils.files import file_size, increment_path
|
||||||
from ultralytics.yolo.utils.ops import Profile
|
from ultralytics.yolo.utils.ops import Profile
|
||||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
|
||||||
|
|
||||||
@ -198,7 +198,7 @@ class Exporter:
|
|||||||
self.im = im
|
self.im = im
|
||||||
self.model = model
|
self.model = model
|
||||||
self.file = file
|
self.file = file
|
||||||
self.output_shape = tuple(y.shape)
|
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y)
|
||||||
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||||||
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
||||||
|
|
||||||
|
@ -4,9 +4,8 @@ from ultralytics import yolo # noqa
|
|||||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||||
from ultralytics.yolo.configs import get_config
|
from ultralytics.yolo.configs import get_config
|
||||||
from ultralytics.yolo.engine.exporter import Exporter
|
from ultralytics.yolo.engine.exporter import Exporter
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER, yaml_load
|
||||||
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
|
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
|
||||||
from ultralytics.yolo.utils.files import yaml_load
|
|
||||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
|
||||||
|
|
||||||
# Map head to model, trainer, validator, and predictor classes
|
# Map head to model, trainer, validator, and predictor classes
|
||||||
|
@ -25,10 +25,10 @@ import ultralytics.yolo.utils.callbacks as callbacks
|
|||||||
from ultralytics import __version__
|
from ultralytics import __version__
|
||||||
from ultralytics.yolo.configs import get_config
|
from ultralytics.yolo.configs import get_config
|
||||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr, yaml_save
|
||||||
from ultralytics.yolo.utils.checks import check_file, print_args
|
from ultralytics.yolo.utils.checks import check_file, print_args
|
||||||
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
|
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
|
||||||
from ultralytics.yolo.utils.files import get_latest_run, increment_path, yaml_save
|
from ultralytics.yolo.utils.files import get_latest_run, increment_path
|
||||||
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
|
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
|
||||||
|
|
||||||
|
|
||||||
|
@ -10,6 +10,7 @@ from pathlib import Path
|
|||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import yaml
|
||||||
|
|
||||||
# Constants
|
# Constants
|
||||||
FILE = Path(__file__).resolve()
|
FILE = Path(__file__).resolve()
|
||||||
@ -224,13 +225,6 @@ def set_logging(name=LOGGING_NAME, verbose=True):
|
|||||||
"propagate": False,}}})
|
"propagate": False,}}})
|
||||||
|
|
||||||
|
|
||||||
set_logging(LOGGING_NAME) # run before defining LOGGER
|
|
||||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
|
||||||
if platform.system() == 'Windows':
|
|
||||||
for fn in LOGGER.info, LOGGER.warning:
|
|
||||||
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
|
||||||
|
|
||||||
|
|
||||||
class TryExcept(contextlib.ContextDecorator):
|
class TryExcept(contextlib.ContextDecorator):
|
||||||
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||||
def __init__(self, msg=''):
|
def __init__(self, msg=''):
|
||||||
@ -253,3 +247,82 @@ def threaded(func):
|
|||||||
return thread
|
return thread
|
||||||
|
|
||||||
return wrapper
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||||
|
"""
|
||||||
|
Function that loads a global settings YAML, or creates it and populates it with default values if it does not exist.
|
||||||
|
|
||||||
|
If the datasets or weights directories are set to None, the current working directory will be used.
|
||||||
|
The 'sync' setting determines whether analytics will be synced to help with YOLO development.
|
||||||
|
"""
|
||||||
|
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
|
||||||
|
|
||||||
|
with torch_distributed_zero_first(RANK):
|
||||||
|
if not file.exists():
|
||||||
|
settings = {
|
||||||
|
'datasets_dir': None, # default datasets directory. If None, current working directory is used.
|
||||||
|
'weights_dir': None, # default weights directory. If None, current working directory is used.
|
||||||
|
'sync': True} # sync analytics to help with YOLO development
|
||||||
|
yaml_save(file, settings)
|
||||||
|
|
||||||
|
return yaml_load(file)
|
||||||
|
|
||||||
|
|
||||||
|
def yaml_save(file='data.yaml', data=None):
|
||||||
|
"""
|
||||||
|
Save YAML data to a file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file (str, optional): File name. Default is 'data.yaml'.
|
||||||
|
data (dict, optional): Data to save in YAML format. Default is None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None: Data is saved to the specified file.
|
||||||
|
"""
|
||||||
|
file = Path(file)
|
||||||
|
if not file.parent.exists():
|
||||||
|
# Create parent directories if they don't exist
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
with open(file, 'w') as f:
|
||||||
|
# Dump data to file in YAML format, converting Path objects to strings
|
||||||
|
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
||||||
|
|
||||||
|
|
||||||
|
def yaml_load(file='data.yaml'):
|
||||||
|
"""
|
||||||
|
Load YAML data from a file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file (str, optional): File name. Default is 'data.yaml'.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: YAML data and file name.
|
||||||
|
"""
|
||||||
|
with open(file, errors='ignore') as f:
|
||||||
|
# Add YAML filename to dict and return
|
||||||
|
return {**yaml.safe_load(f), 'yaml_file': file}
|
||||||
|
|
||||||
|
|
||||||
|
# Run below code on utils init -----------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Set logger
|
||||||
|
set_logging(LOGGING_NAME) # run before defining LOGGER
|
||||||
|
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
||||||
|
if platform.system() == 'Windows':
|
||||||
|
for fn in LOGGER.info, LOGGER.warning:
|
||||||
|
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
||||||
|
|
||||||
|
# Check first-install steps
|
||||||
|
SETTINGS = get_settings()
|
||||||
|
|
||||||
|
|
||||||
|
def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||||
|
"""
|
||||||
|
Function that runs on a first-time ultralytics package installation to set up global settings and create necessary
|
||||||
|
directories.
|
||||||
|
"""
|
||||||
|
SETTINGS.update(kwargs)
|
||||||
|
|
||||||
|
yaml_save(file, SETTINGS)
|
||||||
|
@ -6,8 +6,6 @@ from datetime import datetime
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from zipfile import ZipFile
|
from zipfile import ZipFile
|
||||||
|
|
||||||
import yaml
|
|
||||||
|
|
||||||
|
|
||||||
class WorkingDirectory(contextlib.ContextDecorator):
|
class WorkingDirectory(contextlib.ContextDecorator):
|
||||||
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
||||||
@ -57,18 +55,6 @@ def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
|||||||
return path
|
return path
|
||||||
|
|
||||||
|
|
||||||
def yaml_save(file='data.yaml', data=None):
|
|
||||||
# Single-line safe yaml saving
|
|
||||||
with open(file, 'w') as f:
|
|
||||||
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
|
||||||
|
|
||||||
|
|
||||||
def yaml_load(file='data.yaml'):
|
|
||||||
# Single-line safe yaml loading
|
|
||||||
with open(file, errors='ignore') as f:
|
|
||||||
return {**yaml.safe_load(f), 'yaml_file': file} # add YAML filename to dict and return
|
|
||||||
|
|
||||||
|
|
||||||
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
||||||
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
||||||
if path is None:
|
if path is None:
|
||||||
|
@ -162,13 +162,15 @@ class Bboxes:
|
|||||||
|
|
||||||
class Instances:
|
class Instances:
|
||||||
|
|
||||||
def __init__(self, bboxes, segments=[], keypoints=None, bbox_format="xywh", normalized=True) -> None:
|
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
bboxes (ndarray): bboxes with shape [N, 4].
|
bboxes (ndarray): bboxes with shape [N, 4].
|
||||||
segments (list | ndarray): segments.
|
segments (list | ndarray): segments.
|
||||||
keypoints (ndarray): keypoints with shape [N, 17, 2].
|
keypoints (ndarray): keypoints with shape [N, 17, 2].
|
||||||
"""
|
"""
|
||||||
|
if segments is None:
|
||||||
|
segments = []
|
||||||
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
|
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
|
||||||
self.keypoints = keypoints
|
self.keypoints = keypoints
|
||||||
self.normalized = normalized
|
self.normalized = normalized
|
||||||
|
@ -8,9 +8,8 @@ import torch
|
|||||||
from ultralytics.yolo.data import build_dataloader
|
from ultralytics.yolo.data import build_dataloader
|
||||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||||
from ultralytics.yolo.engine.validator import BaseValidator
|
from ultralytics.yolo.engine.validator import BaseValidator
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops, yaml_load
|
||||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||||
from ultralytics.yolo.utils.files import yaml_load
|
|
||||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||||
|
Loading…
x
Reference in New Issue
Block a user