mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
New guess_model_task()
function (#614)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
520825c4b2
commit
59d4335664
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = "8.0.18"
|
||||
__version__ = "8.0.19"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils import ops
|
||||
|
@ -251,7 +251,7 @@ class ClassificationModel(BaseModel):
|
||||
ch=3,
|
||||
nc=1000,
|
||||
cutoff=10,
|
||||
verbose=True): # yaml, model, number of classes, cutoff index
|
||||
verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag
|
||||
super().__init__()
|
||||
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)
|
||||
|
||||
@ -457,3 +457,53 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
||||
ch = []
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
def guess_model_task(model):
|
||||
"""
|
||||
Guess the task of a PyTorch model from its architecture or configuration.
|
||||
|
||||
Args:
|
||||
model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.
|
||||
|
||||
Returns:
|
||||
str: Task of the model ('detect', 'segment', 'classify').
|
||||
|
||||
Raises:
|
||||
SyntaxError: If the task of the model could not be determined.
|
||||
"""
|
||||
cfg, task = None, None
|
||||
if isinstance(model, dict):
|
||||
cfg = model
|
||||
elif isinstance(model, nn.Module): # PyTorch model
|
||||
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
|
||||
with contextlib.suppress(Exception):
|
||||
cfg = eval(x)
|
||||
break
|
||||
|
||||
# Guess from YAML dictionary
|
||||
if cfg:
|
||||
m = cfg["head"][-1][-2].lower() # output module name
|
||||
if m in ["classify", "classifier", "cls", "fc"]:
|
||||
task = "classify"
|
||||
if m in ["detect"]:
|
||||
task = "detect"
|
||||
if m in ["segment"]:
|
||||
task = "segment"
|
||||
|
||||
# Guess from PyTorch model
|
||||
if task is None and isinstance(model, nn.Module):
|
||||
for m in model.modules():
|
||||
if isinstance(m, Detect):
|
||||
task = "detect"
|
||||
elif isinstance(m, Segment):
|
||||
task = "segment"
|
||||
elif isinstance(m, Classify):
|
||||
task = "classify"
|
||||
|
||||
# Unable to determine task from model
|
||||
if task is None:
|
||||
raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, "
|
||||
"i.e. 'task=detect', 'task=segment' or 'task=classify'.")
|
||||
else:
|
||||
return task
|
||||
|
@ -66,7 +66,7 @@ import torch
|
||||
|
||||
import ultralytics
|
||||
from ultralytics.nn.modules import Detect, Segment
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import check_det_dataset
|
||||
@ -74,7 +74,7 @@ from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||
from ultralytics.yolo.utils.files import file_size
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, select_device, smart_inference_mode
|
||||
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
MACOS = platform.system() == 'Darwin' # macOS environment
|
||||
|
||||
@ -235,7 +235,7 @@ class Exporter:
|
||||
# Finish
|
||||
f = [str(x) for x in f if x] # filter out '' and None
|
||||
if any(f):
|
||||
task = guess_task_from_model_yaml(model)
|
||||
task = guess_model_task(model)
|
||||
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
||||
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||
|
@ -3,12 +3,13 @@
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics import yolo # noqa
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
|
||||
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
|
||||
guess_model_task)
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, smart_inference_mode
|
||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
||||
|
||||
# Map head to model, trainer, validator, and predictor classes
|
||||
MODEL_MAP = {
|
||||
@ -73,9 +74,9 @@ class YOLO:
|
||||
"""
|
||||
cfg = check_yaml(cfg) # check YAML
|
||||
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
|
||||
self.task = guess_task_from_model_yaml(cfg_dict)
|
||||
self.task = guess_model_task(cfg_dict)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
|
||||
self._guess_ops_from_task(self.task)
|
||||
self._assign_ops_from_task(self.task)
|
||||
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
|
||||
self.cfg = cfg
|
||||
|
||||
@ -92,7 +93,7 @@ class YOLO:
|
||||
self.overrides = self.model.args
|
||||
self._reset_ckpt_args(self.overrides)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
|
||||
self._guess_ops_from_task(self.task)
|
||||
self._assign_ops_from_task(self.task)
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
@ -217,7 +218,7 @@ class YOLO:
|
||||
"""
|
||||
self.model.to(device)
|
||||
|
||||
def _guess_ops_from_task(self, task):
|
||||
def _assign_ops_from_task(self, task):
|
||||
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
|
||||
# warning: eval is unsafe. Use with caution
|
||||
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
"""
|
||||
Auto-batch utils
|
||||
AutoBatch utils
|
||||
"""
|
||||
|
||||
from copy import deepcopy
|
||||
|
@ -308,23 +308,6 @@ def strip_optimizer(f='best.pt', s=''):
|
||||
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
||||
|
||||
|
||||
def guess_task_from_model_yaml(model):
|
||||
try:
|
||||
cfg = model if isinstance(model, dict) else model.yaml # model cfg dict
|
||||
m = cfg["head"][-1][-2].lower() # output module name
|
||||
task = None
|
||||
if m in ["classify", "classifier", "cls", "fc"]:
|
||||
task = "classify"
|
||||
if m in ["detect"]:
|
||||
task = "detect"
|
||||
if m in ["segment"]:
|
||||
task = "segment"
|
||||
except Exception as e:
|
||||
raise SyntaxError('Unknown task. Define task explicitly, i.e. task=detect when running your command. '
|
||||
'Valid tasks are detect, segment, classify.') from e
|
||||
return task
|
||||
|
||||
|
||||
def profile(input, ops, n=10, device=None):
|
||||
""" YOLOv8 speed/memory/FLOPs profiler
|
||||
Usage:
|
||||
|
Loading…
x
Reference in New Issue
Block a user