mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
New train profile
argument for loggers (#2862)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0bdd4ad379
commit
6391c60089
@ -24,7 +24,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
|
||||
|
||||
# Install pip packages
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -e .
|
||||
RUN pip install --no-cache -e . thop
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
|
||||
|
||||
# Install pip packages
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -e . --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN pip install --no-cache -e . thop --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
|
||||
|
||||
# Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx "numpy==1.23"
|
||||
RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx thop "numpy==1.23"
|
||||
RUN pip install --no-cache -e .
|
||||
|
||||
# Set environment variables
|
||||
|
@ -83,6 +83,7 @@ task.
|
||||
| `resume` | `False` | resume training from last checkpoint |
|
||||
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
|
||||
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
|
||||
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
|
||||
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
|
||||
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
|
||||
| `momentum` | `0.937` | SGD momentum/Adam beta1 |
|
||||
|
@ -105,6 +105,7 @@ The training settings for YOLO models encompass various hyperparameters and conf
|
||||
| `resume` | `False` | resume training from last checkpoint |
|
||||
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
|
||||
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
|
||||
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
|
||||
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
|
||||
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
|
||||
| `momentum` | `0.937` | SGD momentum/Adam beta1 |
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import contextlib
|
||||
import re
|
||||
import shutil
|
||||
@ -72,7 +73,7 @@ CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic'
|
||||
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
|
||||
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
|
||||
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
|
||||
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader')
|
||||
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader', 'profile')
|
||||
|
||||
|
||||
def cfg2dict(cfg):
|
||||
|
@ -31,6 +31,7 @@ close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
amp: True # Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||||
fraction: 1.0 # dataset fraction to train on (default is 1.0, all images in train set)
|
||||
profile: False # profile ONNX and TensorRT speeds during training for loggers
|
||||
# Segmentation
|
||||
overlap_mask: True # masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # mask downsample ratio (segment train only)
|
||||
|
@ -4,7 +4,7 @@ Benchmark a YOLO model formats for speed and accuracy
|
||||
|
||||
Usage:
|
||||
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
|
||||
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])
|
||||
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
|
||||
run_benchmarks(model='yolov8n.pt', imgsz=160)
|
||||
|
||||
Format | `format=argument` | Model
|
||||
@ -163,13 +163,13 @@ class ProfileModels:
|
||||
profile(): Profiles the models and prints the result.
|
||||
"""
|
||||
|
||||
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True):
|
||||
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True, device=None):
|
||||
self.paths = paths
|
||||
self.num_timed_runs = num_timed_runs
|
||||
self.num_warmup_runs = num_warmup_runs
|
||||
self.imgsz = imgsz
|
||||
self.trt = trt # run TensorRT profiling
|
||||
self.profile() # run profiling
|
||||
self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
def profile(self):
|
||||
files = self.get_files()
|
||||
@ -179,15 +179,16 @@ class ProfileModels:
|
||||
return
|
||||
|
||||
table_rows = []
|
||||
device = 0 if torch.cuda.is_available() else 'cpu'
|
||||
output = []
|
||||
for file in files:
|
||||
engine_file = file.with_suffix('.engine')
|
||||
if file.suffix in ('.pt', '.yaml'):
|
||||
model = YOLO(str(file))
|
||||
model.fuse() # to report correct params and GFLOPs in model.info()
|
||||
model_info = model.info()
|
||||
if self.trt and device == 0 and not engine_file.is_file():
|
||||
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=device)
|
||||
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=device)
|
||||
if self.trt and self.device.type != 'cpu' and not engine_file.is_file():
|
||||
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=self.device)
|
||||
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=self.device)
|
||||
elif file.suffix == '.onnx':
|
||||
model_info = self.get_onnx_model_info(file)
|
||||
onnx_file = file
|
||||
@ -197,8 +198,10 @@ class ProfileModels:
|
||||
t_engine = self.profile_tensorrt_model(str(engine_file))
|
||||
t_onnx = self.profile_onnx_model(str(onnx_file))
|
||||
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
|
||||
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
|
||||
|
||||
self.print_table(table_rows)
|
||||
return output
|
||||
|
||||
def get_files(self):
|
||||
files = []
|
||||
@ -219,7 +222,7 @@ class ProfileModels:
|
||||
# return (num_layers, num_params, num_gradients, num_flops)
|
||||
return 0.0, 0.0, 0.0, 0.0
|
||||
|
||||
def iterative_sigma_clipping(self, data, sigma=2, max_iters=5):
|
||||
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
|
||||
data = np.array(data)
|
||||
for _ in range(max_iters):
|
||||
mean, std = np.mean(data), np.std(data)
|
||||
@ -235,13 +238,13 @@ class ProfileModels:
|
||||
|
||||
# Warmup runs
|
||||
model = YOLO(engine_file)
|
||||
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32)
|
||||
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
|
||||
for _ in range(self.num_warmup_runs):
|
||||
model(input_data, verbose=False)
|
||||
|
||||
# Timed runs
|
||||
run_times = []
|
||||
for _ in tqdm(range(self.num_timed_runs * 30), desc=engine_file):
|
||||
for _ in tqdm(range(self.num_timed_runs * 50), desc=engine_file):
|
||||
results = model(input_data, verbose=False)
|
||||
run_times.append(results[0].speed['inference']) # Convert to milliseconds
|
||||
|
||||
@ -255,6 +258,7 @@ class ProfileModels:
|
||||
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
sess_options.intra_op_num_threads = 8 # Limit the number of threads
|
||||
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
|
||||
|
||||
input_tensor = sess.get_inputs()[0]
|
||||
@ -289,13 +293,22 @@ class ProfileModels:
|
||||
sess.run([output_name], {input_name: input_data})
|
||||
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
|
||||
|
||||
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
|
||||
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
|
||||
return np.mean(run_times), np.std(run_times)
|
||||
|
||||
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
|
||||
layers, params, gradients, flops = model_info
|
||||
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
|
||||
|
||||
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
|
||||
layers, params, gradients, flops = model_info
|
||||
return {
|
||||
'model/name': model_name,
|
||||
'model/parameters': params,
|
||||
'model/GFLOPs': round(flops, 3),
|
||||
'model/speed_ONNX(ms)': round(t_onnx[0], 3),
|
||||
'model/speed_TensorRT(ms)': round(t_engine[0], 3)}
|
||||
|
||||
def print_table(self, table_rows):
|
||||
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
|
||||
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |'
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
|
||||
|
||||
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'
|
||||
|
@ -1,11 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import re
|
||||
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import clearml
|
||||
@ -105,11 +106,7 @@ def on_fit_epoch_end(trainer):
|
||||
value=trainer.epoch_time,
|
||||
iteration=trainer.epoch)
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
for k, v in model_info.items():
|
||||
for k, v in model_info_for_loggers(trainer).items():
|
||||
task.get_logger().report_single_value(k, v)
|
||||
|
||||
|
||||
|
@ -1,9 +1,10 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import comet_ml
|
||||
@ -324,11 +325,7 @@ def on_fit_epoch_end(trainer):
|
||||
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
|
||||
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
|
||||
if curr_epoch == 1:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
|
||||
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
|
||||
experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
|
||||
|
||||
if not save_assets:
|
||||
return
|
||||
|
@ -5,7 +5,7 @@ from time import time
|
||||
|
||||
from ultralytics.hub.utils import PREFIX, events
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
@ -24,11 +24,7 @@ def on_fit_epoch_end(trainer):
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
|
||||
session.upload_metrics()
|
||||
|
@ -1,9 +1,10 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import neptune
|
||||
@ -68,11 +69,7 @@ def on_train_epoch_end(trainer):
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Callback function called at end of each fit (train+val) epoch."""
|
||||
if run and trainer.epoch == 0:
|
||||
model_info = {
|
||||
'parameters': get_num_params(trainer.model),
|
||||
'GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
run['Configuration/Model'] = model_info
|
||||
run['Configuration/Model'] = model_info_for_loggers(trainer)
|
||||
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
||||
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
try:
|
||||
import ray
|
||||
from ray import tune
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
|
||||
|
||||
try:
|
||||
|
@ -1,30 +1,27 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils import TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import wandb as wb
|
||||
|
||||
assert hasattr(wb, '__version__')
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
except (ImportError, AssertionError):
|
||||
wb = None
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
"""Initiate and start project if module is present."""
|
||||
wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
|
||||
trainer.args)) if not wb.run else wb.run
|
||||
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Logs training metrics and model information at the end of an epoch."""
|
||||
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
wb.run.log(model_info, step=trainer.epoch + 1)
|
||||
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
|
@ -192,6 +192,29 @@ def get_num_gradients(model):
|
||||
return sum(x.numel() for x in model.parameters() if x.requires_grad)
|
||||
|
||||
|
||||
def model_info_for_loggers(trainer):
|
||||
"""
|
||||
Return model info dict with useful model information.
|
||||
|
||||
Example for YOLOv8n:
|
||||
{'model/parameters': 3151904,
|
||||
'model/GFLOPs': 8.746,
|
||||
'model/speed_ONNX(ms)': 41.244,
|
||||
'model/speed_TensorRT(ms)': 3.211,
|
||||
'model/speed_PyTorch(ms)': 18.755}
|
||||
"""
|
||||
if trainer.args.profile: # profile ONNX and TensorRT times
|
||||
from ultralytics.yolo.utils.benchmarks import ProfileModels
|
||||
results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
|
||||
results.pop('model/name')
|
||||
else: # only return PyTorch times from most recent validation
|
||||
results = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3)}
|
||||
results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
|
||||
return results
|
||||
|
||||
|
||||
def get_flops(model, imgsz=640):
|
||||
"""Return a YOLO model's FLOPs."""
|
||||
try:
|
||||
|
Loading…
x
Reference in New Issue
Block a user