mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Return processed outputs from predictor (#161)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
parent
cb4801888e
commit
6e5638c128
@ -24,7 +24,8 @@ def test_detect():
|
|||||||
|
|
||||||
# predictor
|
# predictor
|
||||||
pred = detect.DetectionPredictor(overrides={"imgsz": [640, 640]})
|
pred = detect.DetectionPredictor(overrides={"imgsz": [640, 640]})
|
||||||
pred(source=SOURCE, model=trained_model)
|
p = pred(source=SOURCE, model="yolov8n.pt")
|
||||||
|
assert len(p) == 2, "predictor test failed"
|
||||||
|
|
||||||
overrides["resume"] = trainer.last
|
overrides["resume"] = trainer.last
|
||||||
trainer = detect.DetectionTrainer(overrides=overrides)
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
||||||
@ -54,7 +55,8 @@ def test_segment():
|
|||||||
|
|
||||||
# predictor
|
# predictor
|
||||||
pred = segment.SegmentationPredictor(overrides={"imgsz": [640, 640]})
|
pred = segment.SegmentationPredictor(overrides={"imgsz": [640, 640]})
|
||||||
pred(source=SOURCE, model=trained_model)
|
p = pred(source=SOURCE, model="yolov8n-seg.pt")
|
||||||
|
assert len(p) == 2, "predictor test failed"
|
||||||
|
|
||||||
# test resume
|
# test resume
|
||||||
overrides["resume"] = trainer.last
|
overrides["resume"] = trainer.last
|
||||||
@ -91,4 +93,5 @@ def test_classify():
|
|||||||
|
|
||||||
# predictor
|
# predictor
|
||||||
pred = classify.ClassificationPredictor(overrides={"imgsz": [640, 640]})
|
pred = classify.ClassificationPredictor(overrides={"imgsz": [640, 640]})
|
||||||
pred(source=SOURCE, model=trained_model)
|
p = pred(source=SOURCE, model=trained_model)
|
||||||
|
assert len(p) == 2, "Predictor test failed!"
|
||||||
|
@ -121,11 +121,12 @@ class YOLO:
|
|||||||
overrides["conf"] = 0.25
|
overrides["conf"] = 0.25
|
||||||
overrides.update(kwargs)
|
overrides.update(kwargs)
|
||||||
overrides["mode"] = "predict"
|
overrides["mode"] = "predict"
|
||||||
|
overrides["save"] = kwargs.get("save", False) # not save files by default
|
||||||
predictor = self.PredictorClass(overrides=overrides)
|
predictor = self.PredictorClass(overrides=overrides)
|
||||||
|
|
||||||
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
|
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
|
||||||
predictor.setup(model=self.model, source=source)
|
predictor.setup(model=self.model, source=source)
|
||||||
predictor()
|
return predictor()
|
||||||
|
|
||||||
@smart_inference_mode()
|
@smart_inference_mode()
|
||||||
def val(self, data=None, **kwargs):
|
def val(self, data=None, **kwargs):
|
||||||
|
@ -76,6 +76,7 @@ class BasePredictor:
|
|||||||
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
|
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
|
||||||
name = self.args.name or f"{self.args.mode}"
|
name = self.args.name or f"{self.args.mode}"
|
||||||
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
||||||
|
if self.args.save:
|
||||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||||
if self.args.conf is None:
|
if self.args.conf is None:
|
||||||
self.args.conf = 0.25 # default conf=0.25
|
self.args.conf = 0.25 # default conf=0.25
|
||||||
@ -149,7 +150,9 @@ class BasePredictor:
|
|||||||
def __call__(self, source=None, model=None):
|
def __call__(self, source=None, model=None):
|
||||||
self.run_callbacks("on_predict_start")
|
self.run_callbacks("on_predict_start")
|
||||||
model = self.model if self.done_setup else self.setup(source, model)
|
model = self.model if self.done_setup else self.setup(source, model)
|
||||||
|
model.eval()
|
||||||
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
|
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
|
||||||
|
self.all_outputs = []
|
||||||
for batch in self.dataset:
|
for batch in self.dataset:
|
||||||
self.run_callbacks("on_predict_batch_start")
|
self.run_callbacks("on_predict_batch_start")
|
||||||
path, im, im0s, vid_cap, s = batch
|
path, im, im0s, vid_cap, s = batch
|
||||||
@ -194,6 +197,7 @@ class BasePredictor:
|
|||||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
||||||
|
|
||||||
self.run_callbacks("on_predict_end")
|
self.run_callbacks("on_predict_end")
|
||||||
|
return self.all_outputs
|
||||||
|
|
||||||
def show(self, p):
|
def show(self, p):
|
||||||
im0 = self.annotator.result()
|
im0 = self.annotator.result()
|
||||||
|
@ -108,8 +108,9 @@ class Annotator:
|
|||||||
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||||||
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||||||
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
||||||
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
im_mask = (im_gpu * 255)
|
||||||
self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
|
im_mask_np = im_mask.byte().cpu().numpy()
|
||||||
|
self.im[:] = im_mask_np if retina_masks else scale_image(im_gpu.shape, im_mask_np, self.im.shape)
|
||||||
if self.pil:
|
if self.pil:
|
||||||
# convert im back to PIL and update draw
|
# convert im back to PIL and update draw
|
||||||
self.fromarray(self.im)
|
self.fromarray(self.im)
|
||||||
|
@ -37,6 +37,7 @@ class ClassificationPredictor(BasePredictor):
|
|||||||
self.annotator = self.get_annotator(im0)
|
self.annotator = self.get_annotator(im0)
|
||||||
|
|
||||||
prob = preds[idx]
|
prob = preds[idx]
|
||||||
|
self.all_outputs.append(prob)
|
||||||
# Print results
|
# Print results
|
||||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||||
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||||
|
@ -51,12 +51,12 @@ class DetectionPredictor(BasePredictor):
|
|||||||
self.annotator = self.get_annotator(im0)
|
self.annotator = self.get_annotator(im0)
|
||||||
|
|
||||||
det = preds[idx]
|
det = preds[idx]
|
||||||
|
self.all_outputs.append(det)
|
||||||
if len(det) == 0:
|
if len(det) == 0:
|
||||||
return log_string
|
return log_string
|
||||||
for c in det[:, 5].unique():
|
for c in det[:, 5].unique():
|
||||||
n = (det[:, 5] == c).sum() # detections per class
|
n = (det[:, 5] == c).sum() # detections per class
|
||||||
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
|
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
|
||||||
|
|
||||||
# write
|
# write
|
||||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
for *xyxy, conf, cls in reversed(det):
|
for *xyxy, conf, cls in reversed(det):
|
||||||
|
@ -58,7 +58,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|||||||
mask = masks[idx]
|
mask = masks[idx]
|
||||||
if self.args.save_txt:
|
if self.args.save_txt:
|
||||||
segments = [
|
segments = [
|
||||||
ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
ops.scale_segments(im0.shape if self.args.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
||||||
for x in reversed(ops.masks2segments(mask))]
|
for x in reversed(ops.masks2segments(mask))]
|
||||||
|
|
||||||
# Print results
|
# Print results
|
||||||
@ -73,6 +73,9 @@ class SegmentationPredictor(DetectionPredictor):
|
|||||||
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
|
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
|
||||||
255 if self.args.retina_masks else im[idx])
|
255 if self.args.retina_masks else im[idx])
|
||||||
|
|
||||||
|
det = reversed(det[:, :6])
|
||||||
|
self.all_outputs.append([det, mask])
|
||||||
|
|
||||||
# Write results
|
# Write results
|
||||||
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
||||||
if self.args.save_txt: # Write to file
|
if self.args.save_txt: # Write to file
|
||||||
@ -96,7 +99,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|||||||
|
|
||||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||||
def predict(cfg):
|
def predict(cfg):
|
||||||
cfg.model = cfg.model or "n.pt"
|
cfg.model = cfg.model or "yolov8n-seg.pt"
|
||||||
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||||
predictor = SegmentationPredictor(cfg)
|
predictor = SegmentationPredictor(cfg)
|
||||||
predictor()
|
predictor()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user