mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.0.48
Edge TPU fix and Metrics updates (#1171)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: majid nasiri <majnasai@gmail.com>
This commit is contained in:
parent
a58f766f94
commit
74e4c94806
77
.github/workflows/ci.yaml
vendored
77
.github/workflows/ci.yaml
vendored
@ -12,6 +12,56 @@ on:
|
||||
- cron: '0 0 * * *' # runs at 00:00 UTC every day
|
||||
|
||||
jobs:
|
||||
HUB:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: ['3.10']
|
||||
model: [yolov5n]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
||||
id: pip-cache
|
||||
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
|
||||
shell: bash # for Windows compatibility
|
||||
- name: Cache pip
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: ${{ steps.pip-cache.outputs.dir }}
|
||||
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
|
||||
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
|
||||
- name: Install requirements
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
python -m pip install --upgrade pip wheel
|
||||
pip install -e . --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
- name: Check environment
|
||||
run: |
|
||||
echo "RUNNER_OS is ${{ runner.os }}"
|
||||
echo "GITHUB_EVENT_NAME is ${{ github.event_name }}"
|
||||
echo "GITHUB_WORKFLOW is ${{ github.workflow }}"
|
||||
echo "GITHUB_ACTOR is ${{ github.actor }}"
|
||||
echo "GITHUB_REPOSITORY is ${{ github.repository }}"
|
||||
echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}"
|
||||
python --version
|
||||
pip --version
|
||||
pip list
|
||||
- name: Test HUB training
|
||||
shell: python
|
||||
env:
|
||||
APIKEY: ${{ secrets.ULTRALYTICS_HUB_APIKEY }}
|
||||
run: |
|
||||
import os
|
||||
from ultralytics import hub
|
||||
key = os.environ['APIKEY']
|
||||
hub.reset_model(key)
|
||||
hub.start(key)
|
||||
|
||||
Benchmarks:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
@ -25,12 +75,16 @@ jobs:
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
#- name: Cache pip
|
||||
# uses: actions/cache@v3
|
||||
# with:
|
||||
# path: ~/.cache/pip
|
||||
# key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }}
|
||||
# restore-keys: ${{ runner.os }}-Benchmarks-
|
||||
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
||||
id: pip-cache
|
||||
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
|
||||
shell: bash # for Windows compatibility
|
||||
- name: Cache pip
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: ${{ steps.pip-cache.outputs.dir }}
|
||||
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
|
||||
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
|
||||
- name: Install requirements
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
@ -120,17 +174,6 @@ jobs:
|
||||
python --version
|
||||
pip --version
|
||||
pip list
|
||||
- name: Test pip package
|
||||
shell: python
|
||||
env:
|
||||
APIKEY: ${{ secrets.ULTRALYTICS_HUB_APIKEY }}
|
||||
run: |
|
||||
import os
|
||||
import ultralytics
|
||||
key = os.environ['APIKEY']
|
||||
ultralytics.checks()
|
||||
# ultralytics.reset_model(key) # reset trained model
|
||||
# ultralytics.start(key) # train model
|
||||
- name: Test detection
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
|
@ -28,6 +28,29 @@ predictor's call method.
|
||||
probs = r.probs # Class probabilities for classification outputs
|
||||
```
|
||||
|
||||
## Sources
|
||||
|
||||
YOLOv8 can run inference on a variety of sources. The table below lists the various sources that can be used as input
|
||||
for YOLOv8, along with the required format and notes. Sources include images, URLs, PIL images, OpenCV, numpy arrays,
|
||||
torch tensors, CSV files, videos, directories, globs, YouTube videos, and streams. The table also indicates whether each
|
||||
source can be used as a stream and the model argument required for that source.
|
||||
|
||||
| source | stream | model(arg) | type | notes |
|
||||
|------------|---------|--------------------------------------------|----------------|------------------|
|
||||
| image | | `'im.jpg'` | `str`, `Path` | |
|
||||
| URL | | `'https://ultralytics.com/images/bus.jpg'` | `str` | |
|
||||
| screenshot | | `'screen'` | `str` | |
|
||||
| PIL | | `Image.open('im.jpg')` | `PIL.Image` | HWC, RGB |
|
||||
| OpenCV | | `cv2.imread('im.jpg')[:,:,::-1]` | `np.ndarray` | HWC, BGR to RGB |
|
||||
| numpy | | `np.zeros((640,1280,3))` | `np.ndarray` | HWC |
|
||||
| torch | | `torch.zeros(16,3,320,640)` | `torch.Tensor` | BCHW, RGB |
|
||||
| CSV | | `'sources.csv'` | `str`, `Path` | RTSP, RTMP, HTTP |
|
||||
| video | ✓ | `'vid.mp4'` | `str`, `Path` | |
|
||||
| directory | ✓ | `'path/'` | `str`, `Path` | |
|
||||
| glob | ✓ | `path/*.jpg'` | `str` | Use `*` operator |
|
||||
| YouTube | ✓ | `'https://youtu.be/Zgi9g1ksQHc'` | `str` | |
|
||||
| stream | ✓ | `'rtsp://example.com/media.mp4'` | `str` | RTSP, RTMP, HTTP |
|
||||
|
||||
## Working with Results
|
||||
|
||||
Results object consists of these component objects:
|
||||
|
@ -645,7 +645,7 @@
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Git clone install (for development)\n",
|
||||
"!git clone https://github.com/ultralytics/ultralytics\n",
|
||||
"!git clone https://github.com/ultralytics/ultralytics -b main\n",
|
||||
"%pip install -qe ultralytics"
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -3,7 +3,7 @@
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.utils import LINUX, ROOT, SETTINGS, checks
|
||||
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS
|
||||
|
||||
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
|
||||
CFG = 'yolov8n'
|
||||
@ -49,7 +49,7 @@ def test_val_classify():
|
||||
# Predict checks -------------------------------------------------------------------------------------------------------
|
||||
def test_predict_detect():
|
||||
run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt")
|
||||
if checks.check_online():
|
||||
if ONLINE:
|
||||
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32')
|
||||
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32')
|
||||
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32')
|
||||
|
@ -9,7 +9,7 @@ from PIL import Image
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.yolo.data.build import load_inference_source
|
||||
from ultralytics.yolo.utils import LINUX, ROOT, SETTINGS, checks
|
||||
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS
|
||||
|
||||
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
|
||||
CFG = 'yolov8n.yaml'
|
||||
@ -58,7 +58,7 @@ def test_predict_img():
|
||||
batch = [
|
||||
str(SOURCE), # filename
|
||||
Path(SOURCE), # Path
|
||||
'https://ultralytics.com/images/zidane.jpg' if checks.check_online() else SOURCE, # URI
|
||||
'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI
|
||||
cv2.imread(str(SOURCE)), # OpenCV
|
||||
Image.open(SOURCE), # PIL
|
||||
np.zeros((320, 640, 3))] # numpy
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = '8.0.47'
|
||||
__version__ = '8.0.48'
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||
|
@ -3,11 +3,11 @@
|
||||
import requests
|
||||
|
||||
from ultralytics.hub.auth import Auth
|
||||
from ultralytics.hub.session import HubTrainingSession
|
||||
from ultralytics.hub.utils import split_key
|
||||
from ultralytics.hub.session import HUBTrainingSession
|
||||
from ultralytics.hub.utils import PREFIX, split_key
|
||||
from ultralytics.yolo.engine.exporter import EXPORT_FORMATS_LIST
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils import LOGGER, PREFIX, emojis
|
||||
from ultralytics.yolo.utils import LOGGER, emojis
|
||||
|
||||
# Define all export formats
|
||||
EXPORT_FORMATS_HUB = EXPORT_FORMATS_LIST + ['ultralytics_tflite', 'ultralytics_coreml']
|
||||
@ -18,23 +18,19 @@ def start(key=''):
|
||||
Start training models with Ultralytics HUB. Usage: from ultralytics.hub import start; start('API_KEY')
|
||||
"""
|
||||
auth = Auth(key)
|
||||
try:
|
||||
if not auth.get_state():
|
||||
model_id = request_api_key(auth)
|
||||
else:
|
||||
_, model_id = split_key(key)
|
||||
if not auth.get_state():
|
||||
model_id = request_api_key(auth)
|
||||
else:
|
||||
_, model_id = split_key(key)
|
||||
|
||||
if not model_id:
|
||||
raise ConnectionError(emojis('Connecting with global API key is not currently supported. ❌'))
|
||||
if not model_id:
|
||||
raise ConnectionError(emojis('Connecting with global API key is not currently supported. ❌'))
|
||||
|
||||
session = HubTrainingSession(model_id=model_id, auth=auth)
|
||||
session.check_disk_space()
|
||||
session = HUBTrainingSession(model_id=model_id, auth=auth)
|
||||
session.check_disk_space()
|
||||
|
||||
model = YOLO(session.input_file)
|
||||
session.register_callbacks(model)
|
||||
model.train(**session.train_args)
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'{PREFIX}{e}')
|
||||
model = YOLO(model=session.model_file, session=session)
|
||||
model.train(**session.train_args)
|
||||
|
||||
|
||||
def request_api_key(auth, max_attempts=3):
|
||||
@ -62,9 +58,9 @@ def reset_model(key=''):
|
||||
r = requests.post('https://api.ultralytics.com/model-reset', json={'apiKey': api_key, 'modelId': model_id})
|
||||
|
||||
if r.status_code == 200:
|
||||
LOGGER.info(f'{PREFIX}model reset successfully')
|
||||
LOGGER.info(f'{PREFIX}Model reset successfully')
|
||||
return
|
||||
LOGGER.warning(f'{PREFIX}model reset failure {r.status_code} {r.reason}')
|
||||
LOGGER.warning(f'{PREFIX}Model reset failure {r.status_code} {r.reason}')
|
||||
|
||||
|
||||
def export_model(key='', format='torchscript'):
|
||||
@ -76,7 +72,7 @@ def export_model(key='', format='torchscript'):
|
||||
'apiKey': api_key,
|
||||
'modelId': model_id,
|
||||
'format': format})
|
||||
assert (r.status_code == 200), f'{PREFIX}{format} export failure {r.status_code} {r.reason}'
|
||||
assert r.status_code == 200, f'{PREFIX}{format} export failure {r.status_code} {r.reason}'
|
||||
LOGGER.info(f'{PREFIX}{format} export started ✅')
|
||||
|
||||
|
||||
@ -89,7 +85,7 @@ def get_export(key='', format='torchscript'):
|
||||
'apiKey': api_key,
|
||||
'modelId': model_id,
|
||||
'format': format})
|
||||
assert (r.status_code == 200), f'{PREFIX}{format} get_export failure {r.status_code} {r.reason}'
|
||||
assert r.status_code == 200, f'{PREFIX}{format} get_export failure {r.status_code} {r.reason}'
|
||||
return r.json()
|
||||
|
||||
|
||||
|
@ -1,30 +1,27 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
import json
|
||||
import signal
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from time import sleep, time
|
||||
from time import sleep
|
||||
|
||||
import requests
|
||||
|
||||
from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_request
|
||||
from ultralytics.yolo.utils import LOGGER, PREFIX, __version__, emojis, is_colab, threaded
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils import LOGGER, PREFIX, __version__, checks, emojis, is_colab, threaded
|
||||
|
||||
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
|
||||
session = None
|
||||
|
||||
|
||||
class HubTrainingSession:
|
||||
class HUBTrainingSession:
|
||||
|
||||
def __init__(self, model_id, auth):
|
||||
self.agent_id = None # identifies which instance is communicating with server
|
||||
self.model_id = model_id
|
||||
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
|
||||
self.auth_header = auth.get_auth_header()
|
||||
self._rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
|
||||
self._timers = {} # rate limit timers (seconds)
|
||||
self._metrics_queue = {} # metrics queue
|
||||
self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
|
||||
self.timers = {} # rate limit timers (seconds)
|
||||
self.metrics_queue = {} # metrics queue
|
||||
self.model = self._get_model()
|
||||
self.alive = True
|
||||
self._start_heartbeat() # start heartbeats
|
||||
@ -50,16 +47,15 @@ class HubTrainingSession:
|
||||
self.alive = False
|
||||
|
||||
def upload_metrics(self):
|
||||
payload = {'metrics': self._metrics_queue.copy(), 'type': 'metrics'}
|
||||
smart_request(f'{self.api_url}', json=payload, headers=self.auth_header, code=2)
|
||||
payload = {'metrics': self.metrics_queue.copy(), 'type': 'metrics'}
|
||||
smart_request('post', self.api_url, json=payload, headers=self.auth_header, code=2)
|
||||
|
||||
def _get_model(self):
|
||||
# Returns model from database by id
|
||||
api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
|
||||
headers = self.auth_header
|
||||
|
||||
try:
|
||||
response = smart_request(api_url, method='get', headers=headers, thread=False, code=0)
|
||||
response = smart_request('get', api_url, headers=self.auth_header, thread=False, code=0)
|
||||
data = response.json().get('data', None)
|
||||
|
||||
if data.get('status', None) == 'trained':
|
||||
@ -82,11 +78,8 @@ class HubTrainingSession:
|
||||
'cache': data['cache'],
|
||||
'data': data['data']}
|
||||
|
||||
self.input_file = data.get('cfg', data['weights'])
|
||||
|
||||
# hack for yolov5 cfg adds u
|
||||
if 'cfg' in data and 'yolov5' in data['cfg']:
|
||||
self.input_file = data['cfg'].replace('.yaml', 'u.yaml')
|
||||
self.model_file = data.get('cfg', data['weights'])
|
||||
self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u
|
||||
|
||||
return data
|
||||
except requests.exceptions.ConnectionError as e:
|
||||
@ -98,86 +91,44 @@ class HubTrainingSession:
|
||||
if not check_dataset_disk_space(self.model['data']):
|
||||
raise MemoryError('Not enough disk space')
|
||||
|
||||
def register_callbacks(self, trainer):
|
||||
trainer.add_callback('on_pretrain_routine_end', self.on_pretrain_routine_end)
|
||||
trainer.add_callback('on_fit_epoch_end', self.on_fit_epoch_end)
|
||||
trainer.add_callback('on_model_save', self.on_model_save)
|
||||
trainer.add_callback('on_train_end', self.on_train_end)
|
||||
|
||||
def on_pretrain_routine_end(self, trainer):
|
||||
"""
|
||||
Start timer for upload rate limit.
|
||||
This method does not use trainer. It is passed to all callbacks by default.
|
||||
"""
|
||||
# Start timer for upload rate limit
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
||||
self._timers = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
|
||||
|
||||
def on_fit_epoch_end(self, trainer):
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
self._metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - self._timers['metrics'] > self._rate_limits['metrics']:
|
||||
self.upload_metrics()
|
||||
self._timers['metrics'] = time() # reset timer
|
||||
self._metrics_queue = {} # reset queue
|
||||
|
||||
def on_model_save(self, trainer):
|
||||
# Upload checkpoints with rate limiting
|
||||
is_best = trainer.best_fitness == trainer.fitness
|
||||
if time() - self._timers['ckpt'] > self._rate_limits['ckpt']:
|
||||
LOGGER.info(f'{PREFIX}Uploading checkpoint {self.model_id}')
|
||||
self._upload_model(trainer.epoch, trainer.last, is_best)
|
||||
self._timers['ckpt'] = time() # reset timer
|
||||
|
||||
def on_train_end(self, trainer):
|
||||
# Upload final model and metrics with exponential standoff
|
||||
LOGGER.info(f'{PREFIX}Training completed successfully ✅\n'
|
||||
f'{PREFIX}Uploading final {self.model_id}')
|
||||
|
||||
self._upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
|
||||
self.alive = False # stop heartbeats
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
||||
|
||||
def _upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
||||
def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
||||
# Upload a model to HUB
|
||||
if Path(weights).is_file():
|
||||
with open(weights, 'rb') as f:
|
||||
file = f.read()
|
||||
else:
|
||||
LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload failed. Missing model {weights}.')
|
||||
LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.')
|
||||
file = None
|
||||
url = f'{self.api_url}/upload'
|
||||
# url = 'http://httpbin.org/post' # for debug
|
||||
data = {'epoch': epoch}
|
||||
if final:
|
||||
data.update({'type': 'final', 'map': map})
|
||||
smart_request('post',
|
||||
url,
|
||||
data=data,
|
||||
files={'best.pt': file},
|
||||
headers=self.auth_header,
|
||||
retry=10,
|
||||
timeout=3600,
|
||||
thread=False,
|
||||
progress=True,
|
||||
code=4)
|
||||
else:
|
||||
data.update({'type': 'epoch', 'isBest': bool(is_best)})
|
||||
|
||||
smart_request(f'{self.api_url}/upload',
|
||||
data=data,
|
||||
files={'best.pt' if final else 'last.pt': file},
|
||||
headers=self.auth_header,
|
||||
retry=10 if final else None,
|
||||
timeout=3600 if final else None,
|
||||
code=4 if final else 3)
|
||||
smart_request('post', url, data=data, files={'last.pt': file}, headers=self.auth_header, code=3)
|
||||
|
||||
@threaded
|
||||
def _start_heartbeat(self):
|
||||
while self.alive:
|
||||
r = smart_request(f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
|
||||
r = smart_request('post',
|
||||
f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
|
||||
json={
|
||||
'agent': AGENT_NAME,
|
||||
'agentId': self.agent_id},
|
||||
headers=self.auth_header,
|
||||
retry=0,
|
||||
code=5,
|
||||
thread=False)
|
||||
thread=False) # already in a thread
|
||||
self.agent_id = r.json().get('data', {}).get('agentId', None)
|
||||
sleep(self._rate_limits['heartbeat'])
|
||||
sleep(self.rate_limits['heartbeat'])
|
||||
|
@ -10,13 +10,13 @@ from pathlib import Path
|
||||
from random import random
|
||||
|
||||
import requests
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, ENVIRONMENT, LOGGER, RANK, SETTINGS, TESTS_RUNNING, TryExcept,
|
||||
__version__, colorstr, emojis, get_git_origin_url, is_colab, is_git_dir,
|
||||
is_pip_package)
|
||||
from ultralytics.yolo.utils.checks import check_online
|
||||
from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, ENVIRONMENT, LOGGER, ONLINE, RANK, SETTINGS, TESTS_RUNNING,
|
||||
TQDM_BAR_FORMAT, TryExcept, __version__, colorstr, emojis, get_git_origin_url,
|
||||
is_colab, is_git_dir, is_pip_package)
|
||||
|
||||
PREFIX = colorstr('Ultralytics: ')
|
||||
PREFIX = colorstr('Ultralytics HUB: ')
|
||||
HELP_MSG = 'If this issue persists please visit https://github.com/ultralytics/hub/issues for assistance.'
|
||||
HUB_API_ROOT = os.environ.get('ULTRALYTICS_HUB_API', 'https://api.ultralytics.com')
|
||||
|
||||
@ -60,7 +60,6 @@ def request_with_credentials(url: str) -> any:
|
||||
return output.eval_js('_hub_tmp')
|
||||
|
||||
|
||||
# Deprecated TODO: eliminate this function?
|
||||
def split_key(key=''):
|
||||
"""
|
||||
Verify and split a 'api_key[sep]model_id' string, sep is one of '.' or '_'
|
||||
@ -84,36 +83,61 @@ def split_key(key=''):
|
||||
return api_key, model_id
|
||||
|
||||
|
||||
def smart_request(*args, retry=3, timeout=30, thread=True, code=-1, method='post', verbose=True, **kwargs):
|
||||
def requests_with_progress(method, url, **kwargs):
|
||||
"""
|
||||
Make an HTTP request using the specified method and URL, with an optional progress bar.
|
||||
|
||||
Args:
|
||||
method (str): The HTTP method to use (e.g. 'GET', 'POST').
|
||||
url (str): The URL to send the request to.
|
||||
progress (bool, optional): Whether to display a progress bar. Defaults to False.
|
||||
**kwargs: Additional keyword arguments to pass to the underlying `requests.request` function.
|
||||
|
||||
Returns:
|
||||
requests.Response: The response from the HTTP request.
|
||||
|
||||
"""
|
||||
progress = kwargs.pop('progress', False)
|
||||
if not progress:
|
||||
return requests.request(method, url, **kwargs)
|
||||
response = requests.request(method, url, stream=True, **kwargs)
|
||||
total = int(response.headers.get('content-length', 0)) # total size
|
||||
pbar = tqdm(total=total, unit='B', unit_scale=True, unit_divisor=1024, bar_format=TQDM_BAR_FORMAT)
|
||||
for data in response.iter_content(chunk_size=1024):
|
||||
pbar.update(len(data))
|
||||
pbar.close()
|
||||
return response
|
||||
|
||||
|
||||
def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, progress=False, **kwargs):
|
||||
"""
|
||||
Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
|
||||
|
||||
Args:
|
||||
*args: Positional arguments to be passed to the requests function specified in method.
|
||||
method (str): The HTTP method to use for the request. Choices are 'post' and 'get'.
|
||||
url (str): The URL to make the request to.
|
||||
retry (int, optional): Number of retries to attempt before giving up. Default is 3.
|
||||
timeout (int, optional): Timeout in seconds after which the function will give up retrying. Default is 30.
|
||||
thread (bool, optional): Whether to execute the request in a separate daemon thread. Default is True.
|
||||
code (int, optional): An identifier for the request, used for logging purposes. Default is -1.
|
||||
method (str, optional): The HTTP method to use for the request. Choices are 'post' and 'get'. Default is 'post'.
|
||||
verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True.
|
||||
progress (bool, optional): Whether to show a progress bar during the request. Default is False.
|
||||
**kwargs: Keyword arguments to be passed to the requests function specified in method.
|
||||
|
||||
Returns:
|
||||
requests.Response: The HTTP response object. If the request is executed in a separate thread, returns None.
|
||||
|
||||
"""
|
||||
retry_codes = (408, 500) # retry only these codes
|
||||
|
||||
@TryExcept(verbose=verbose)
|
||||
def func(*func_args, **func_kwargs):
|
||||
def func(func_method, func_url, **func_kwargs):
|
||||
r = None # response
|
||||
t0 = time.time() # initial time for timer
|
||||
for i in range(retry + 1):
|
||||
if (time.time() - t0) > timeout:
|
||||
break
|
||||
if method == 'post':
|
||||
r = requests.post(*func_args, **func_kwargs) # i.e. post(url, data, json, files)
|
||||
elif method == 'get':
|
||||
r = requests.get(*func_args, **func_kwargs) # i.e. get(url, data, json, files)
|
||||
r = requests_with_progress(func_method, func_url, **func_kwargs) # i.e. get(url, data, json, files)
|
||||
if r.status_code == 200:
|
||||
break
|
||||
try:
|
||||
@ -134,6 +158,8 @@ def smart_request(*args, retry=3, timeout=30, thread=True, code=-1, method='post
|
||||
time.sleep(2 ** i) # exponential standoff
|
||||
return r
|
||||
|
||||
args = method, url
|
||||
kwargs['progress'] = progress
|
||||
if thread:
|
||||
threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start()
|
||||
else:
|
||||
@ -157,8 +183,8 @@ class Traces:
|
||||
self.enabled = \
|
||||
SETTINGS['sync'] and \
|
||||
RANK in {-1, 0} and \
|
||||
check_online() and \
|
||||
not TESTS_RUNNING and \
|
||||
ONLINE and \
|
||||
(is_pip_package() or get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git')
|
||||
|
||||
def __call__(self, cfg, all_keys=False, traces_sample_rate=1.0):
|
||||
@ -182,13 +208,7 @@ class Traces:
|
||||
trace = {'uuid': SETTINGS['uuid'], 'cfg': cfg, 'metadata': self.metadata}
|
||||
|
||||
# Send a request to the HUB API to sync analytics
|
||||
smart_request(f'{HUB_API_ROOT}/v1/usage/anonymous',
|
||||
json=trace,
|
||||
headers=None,
|
||||
code=3,
|
||||
retry=0,
|
||||
timeout=1.0,
|
||||
verbose=False)
|
||||
smart_request('post', f'{HUB_API_ROOT}/v1/usage/anonymous', json=trace, code=3, retry=0, verbose=False)
|
||||
|
||||
|
||||
# Run below code on hub/utils init -------------------------------------------------------------------------------------
|
||||
|
@ -13,7 +13,7 @@ from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_P
|
||||
|
||||
CLI_HELP_MSG = \
|
||||
f"""
|
||||
Arguments received: {str(['yolo'] + sys.argv[1:])}. Note that Ultralytics 'yolo' commands use the following syntax:
|
||||
Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax:
|
||||
|
||||
yolo TASK MODE ARGS
|
||||
|
||||
@ -217,6 +217,9 @@ def entrypoint(debug=''):
|
||||
if a.startswith('--'):
|
||||
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
|
||||
a = a[2:]
|
||||
if a.endswith(','):
|
||||
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
|
||||
a = a[:-1]
|
||||
if '=' in a:
|
||||
try:
|
||||
re.sub(r' *= *', '=', a) # remove spaces around equals sign
|
||||
@ -284,6 +287,9 @@ def entrypoint(debug=''):
|
||||
model = YOLO(model, task=task)
|
||||
|
||||
# Task Update
|
||||
if task and task != model.task:
|
||||
LOGGER.warning(f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
|
||||
f'This may produce errors.')
|
||||
task = task or model.task
|
||||
overrides['task'] = task
|
||||
|
||||
|
@ -243,15 +243,12 @@ class Exporter:
|
||||
if coreml: # CoreML
|
||||
f[4], _ = self._export_coreml()
|
||||
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
||||
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export is still under development. '
|
||||
'Please consider contributing to the effort if you have TF expertise. Thank you!')
|
||||
nms = False
|
||||
self.args.int8 |= edgetpu
|
||||
f[5], s_model = self._export_saved_model()
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
f[6], _ = self._export_pb(s_model)
|
||||
if tflite:
|
||||
f[7], _ = self._export_tflite(s_model, nms=nms, agnostic_nms=self.args.agnostic_nms)
|
||||
f[7], _ = self._export_tflite(s_model, nms=False, agnostic_nms=self.args.agnostic_nms)
|
||||
if edgetpu:
|
||||
f[8], _ = self._export_edgetpu(tflite_model=str(
|
||||
Path(f[5]) / (self.file.stem + '_full_integer_quant.tflite'))) # int8 in/out
|
||||
@ -619,20 +616,18 @@ class Exporter:
|
||||
@try_export
|
||||
def _export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
|
||||
# YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||
LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185')
|
||||
|
||||
cmd = 'edgetpu_compiler --version'
|
||||
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||||
assert LINUX, f'export only supported on Linux. See {help_url}'
|
||||
if subprocess.run(f'{cmd} > /dev/null', shell=True).returncode != 0:
|
||||
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
|
||||
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
||||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||||
for c in (
|
||||
# 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', # errors
|
||||
'wget --no-check-certificate -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | '
|
||||
'sudo apt-key add -',
|
||||
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' # no comma
|
||||
'sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||||
'sudo apt-get update',
|
||||
'sudo apt-get install edgetpu-compiler'):
|
||||
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
||||
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||||
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
||||
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
||||
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||||
|
||||
|
@ -43,7 +43,7 @@ class YOLO:
|
||||
cfg (str): The model configuration if loaded from *.yaml file.
|
||||
ckpt_path (str): The checkpoint file path.
|
||||
overrides (dict): Overrides for the trainer object.
|
||||
metrics_data (Any): The data for metrics.
|
||||
metrics (Any): The data for metrics.
|
||||
|
||||
Methods:
|
||||
__call__(source=None, stream=False, **kwargs):
|
||||
@ -67,7 +67,7 @@ class YOLO:
|
||||
list(ultralytics.yolo.engine.results.Results): The prediction results.
|
||||
"""
|
||||
|
||||
def __init__(self, model='yolov8n.pt', task=None) -> None:
|
||||
def __init__(self, model='yolov8n.pt', task=None, session=None) -> None:
|
||||
"""
|
||||
Initializes the YOLO model.
|
||||
|
||||
@ -83,7 +83,8 @@ class YOLO:
|
||||
self.cfg = None # if loaded from *.yaml
|
||||
self.ckpt_path = None
|
||||
self.overrides = {} # overrides for trainer object
|
||||
self.metrics_data = None
|
||||
self.metrics = None # validation/training metrics
|
||||
self.session = session # HUB session
|
||||
|
||||
# Load or create new YOLO model
|
||||
suffix = Path(model).suffix
|
||||
@ -184,6 +185,7 @@ class YOLO:
|
||||
self._check_is_pytorch_model()
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
@ -217,7 +219,6 @@ class YOLO:
|
||||
is_cli = sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')
|
||||
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
||||
|
||||
@smart_inference_mode()
|
||||
def track(self, source=None, stream=False, **kwargs):
|
||||
from ultralytics.tracker import register_tracker
|
||||
register_tracker(self)
|
||||
@ -252,7 +253,7 @@ class YOLO:
|
||||
|
||||
validator = TASK_MAP[self.task][2](args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics_data = validator.metrics
|
||||
self.metrics = validator.metrics
|
||||
|
||||
return validator.metrics
|
||||
|
||||
@ -314,12 +315,13 @@ class YOLO:
|
||||
if not overrides.get('resume'): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
self.trainer.hub_session = self.session # attach optional HUB session
|
||||
self.trainer.train()
|
||||
# update model and cfg after training
|
||||
if RANK in {0, -1}:
|
||||
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
|
||||
self.overrides = self.model.args
|
||||
self.metrics_data = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
||||
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
||||
|
||||
def to(self, device):
|
||||
"""
|
||||
@ -352,15 +354,6 @@ class YOLO:
|
||||
"""
|
||||
return self.model.transforms if hasattr(self.model, 'transforms') else None
|
||||
|
||||
@property
|
||||
def metrics(self):
|
||||
"""
|
||||
Returns metrics if computed
|
||||
"""
|
||||
if not self.metrics_data:
|
||||
LOGGER.info('No metrics data found! Run training or validation operation first.')
|
||||
return self.metrics_data
|
||||
|
||||
@staticmethod
|
||||
def add_callback(event: str, func):
|
||||
"""
|
||||
|
@ -139,7 +139,8 @@ class Results:
|
||||
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im)
|
||||
|
||||
if logits is not None:
|
||||
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
n5 = min(len(self.names), 5)
|
||||
top5i = logits.argsort(0, descending=True)[:n5].tolist() # top 5 indices
|
||||
text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, "
|
||||
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
||||
|
||||
|
@ -243,6 +243,24 @@ def is_docker() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def is_online() -> bool:
|
||||
"""
|
||||
Check internet connectivity by attempting to connect to a known online host.
|
||||
|
||||
Returns:
|
||||
bool: True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
with contextlib.suppress(Exception):
|
||||
host = socket.gethostbyname('www.github.com')
|
||||
socket.create_connection((host, 80), timeout=2)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
ONLINE = is_online()
|
||||
|
||||
|
||||
def is_pip_package(filepath: str = __name__) -> bool:
|
||||
"""
|
||||
Determines if the file at the given filepath is part of a pip package.
|
||||
@ -513,6 +531,7 @@ def set_sentry():
|
||||
RANK in {-1, 0} and \
|
||||
Path(sys.argv[0]).name == 'yolo' and \
|
||||
not TESTS_RUNNING and \
|
||||
ONLINE and \
|
||||
((is_pip_package() and not is_git_dir()) or
|
||||
(get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git' and get_git_branch() == 'main')):
|
||||
|
||||
|
@ -151,4 +151,5 @@ def add_integration_callbacks(instance):
|
||||
|
||||
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks:
|
||||
for k, v in x.items():
|
||||
instance.callbacks[k].append(v) # callback[name].append(func)
|
||||
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
|
||||
instance.callbacks[k].append(v) # callback[name].append(func)
|
||||
|
@ -4,24 +4,33 @@ import json
|
||||
from time import time
|
||||
|
||||
from ultralytics.hub.utils import PREFIX, traces
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
session = not TESTS_RUNNING and getattr(trainer, 'hub_session', None)
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
# Start timer for upload rate limit
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
session.t = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
|
||||
session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(trainer.metrics) # json string
|
||||
if time() - session.t['metrics'] > session.rate_limits['metrics']:
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
|
||||
session.upload_metrics()
|
||||
session.t['metrics'] = time() # reset timer
|
||||
session.timers['metrics'] = time() # reset timer
|
||||
session.metrics_queue = {} # reset queue
|
||||
|
||||
|
||||
@ -30,21 +39,21 @@ def on_model_save(trainer):
|
||||
if session:
|
||||
# Upload checkpoints with rate limiting
|
||||
is_best = trainer.best_fitness == trainer.fitness
|
||||
if time() - session.t['ckpt'] > session.rate_limits['ckpt']:
|
||||
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
|
||||
LOGGER.info(f'{PREFIX}Uploading checkpoint {session.model_id}')
|
||||
session.upload_model(trainer.epoch, trainer.last, is_best)
|
||||
session.t['ckpt'] = time() # reset timer
|
||||
session.timers['ckpt'] = time() # reset timer
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
# Upload final model and metrics with exponential standoff
|
||||
LOGGER.info(f'{PREFIX}Training completed successfully ✅\n'
|
||||
f'{PREFIX}Uploading final {session.model_id}')
|
||||
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50-95(B)'], final=True)
|
||||
session.shutdown() # stop heartbeats
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
LOGGER.info(f'{PREFIX}Syncing final model...')
|
||||
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
|
||||
session.alive = False # stop heartbeats
|
||||
LOGGER.info(f'{PREFIX}Done ✅\n'
|
||||
f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
|
||||
|
||||
def on_train_start(trainer):
|
||||
|
@ -1,8 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
except (ImportError, AssertionError):
|
||||
SummaryWriter = None
|
||||
|
||||
writer = None # TensorBoard SummaryWriter instance
|
||||
|
||||
@ -18,7 +22,6 @@ def on_pretrain_routine_start(trainer):
|
||||
try:
|
||||
writer = SummaryWriter(str(trainer.save_dir))
|
||||
except Exception as e:
|
||||
writer = None # TensorBoard SummaryWriter instance
|
||||
LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}')
|
||||
|
||||
|
||||
|
@ -21,7 +21,7 @@ import torch
|
||||
from matplotlib import font_manager
|
||||
|
||||
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, downloads, emojis,
|
||||
is_colab, is_docker, is_jupyter)
|
||||
is_colab, is_docker, is_jupyter, is_online)
|
||||
|
||||
|
||||
def is_ascii(s) -> bool:
|
||||
@ -171,21 +171,6 @@ def check_font(font='Arial.ttf'):
|
||||
return file
|
||||
|
||||
|
||||
def check_online() -> bool:
|
||||
"""
|
||||
Check internet connectivity by attempting to connect to a known online host.
|
||||
|
||||
Returns:
|
||||
bool: True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
with contextlib.suppress(Exception):
|
||||
host = socket.gethostbyname('www.github.com')
|
||||
socket.create_connection((host, 80), timeout=2)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_python(minimum: str = '3.7.0') -> bool:
|
||||
"""
|
||||
Check current python version against the required minimum version.
|
||||
@ -229,7 +214,7 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
if s and install and AUTOINSTALL: # check environment variable
|
||||
LOGGER.info(f"{prefix} YOLOv8 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
||||
try:
|
||||
assert check_online(), 'AutoUpdate skipped (offline)'
|
||||
assert is_online(), 'AutoUpdate skipped (offline)'
|
||||
LOGGER.info(subprocess.check_output(f'pip install {s} {cmds}', shell=True).decode())
|
||||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file or requirements}\n" \
|
||||
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
||||
@ -249,13 +234,13 @@ def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
|
||||
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}'
|
||||
|
||||
|
||||
def check_yolov5u_filename(file: str):
|
||||
def check_yolov5u_filename(file: str, verbose: bool = True):
|
||||
# Replace legacy YOLOv5 filenames with updated YOLOv5u filenames
|
||||
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
|
||||
original_file = file
|
||||
file = re.sub(r'(.*yolov5([nsmlx]))\.', '\\1u.', file) # i.e. yolov5n.pt -> yolov5nu.pt
|
||||
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.', '\\1u.', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
||||
if file != original_file:
|
||||
if file != original_file and verbose:
|
||||
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
|
||||
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
|
||||
|
@ -12,7 +12,7 @@ import requests
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, checks
|
||||
from ultralytics.yolo.utils import LOGGER, checks, is_online
|
||||
|
||||
GITHUB_ASSET_NAMES = [f'yolov8{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] + \
|
||||
[f'yolov5{size}u.pt' for size in 'nsmlx'] + \
|
||||
@ -112,7 +112,7 @@ def safe_download(url,
|
||||
break # success
|
||||
f.unlink() # remove partial downloads
|
||||
except Exception as e:
|
||||
if i == 0 and not checks.check_online():
|
||||
if i == 0 and not is_online():
|
||||
raise ConnectionError(f'❌ Download failure for {url}. Environment is not online.') from e
|
||||
elif i >= retry:
|
||||
raise ConnectionError(f'❌ Download failure for {url}. Retry limit reached.') from e
|
||||
@ -134,8 +134,7 @@ def safe_download(url,
|
||||
|
||||
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
||||
from ultralytics.yolo.utils import SETTINGS
|
||||
from ultralytics.yolo.utils.checks import check_yolov5u_filename
|
||||
from ultralytics.yolo.utils import SETTINGS # scoped for circular import
|
||||
|
||||
def github_assets(repository, version='latest'):
|
||||
# Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...])
|
||||
@ -146,7 +145,7 @@ def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
|
||||
# YOLOv3/5u updates
|
||||
file = str(file)
|
||||
file = check_yolov5u_filename(file)
|
||||
file = checks.check_yolov5u_filename(file)
|
||||
file = Path(file.strip().replace("'", ''))
|
||||
if file.exists():
|
||||
return str(file)
|
||||
|
@ -43,16 +43,18 @@ def bbox_ioa(box1, box2, eps=1e-7):
|
||||
|
||||
|
||||
def box_iou(box1, box2, eps=1e-7):
|
||||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
|
||||
Arguments:
|
||||
box1 (Tensor[N, 4])
|
||||
box2 (Tensor[M, 4])
|
||||
eps
|
||||
|
||||
Returns:
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||
@ -109,7 +111,7 @@ def mask_iou(mask1, mask2, eps=1e-7):
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [M, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, [N, M]
|
||||
Returns: masks iou, [N, M]
|
||||
"""
|
||||
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
||||
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
||||
@ -121,7 +123,7 @@ def masks_iou(mask1, mask2, eps=1e-7):
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [N, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, (N, )
|
||||
Returns: masks iou, (N, )
|
||||
"""
|
||||
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
||||
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
||||
@ -317,10 +319,10 @@ def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confi
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves
|
||||
# Arguments
|
||||
Arguments:
|
||||
recall: The recall curve (list)
|
||||
precision: The precision curve (list)
|
||||
# Returns
|
||||
Returns:
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
@ -344,17 +346,30 @@ def compute_ap(recall, precision):
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
save_dir: Plot save directory
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
Computes the average precision per class for object detection evaluation.
|
||||
|
||||
Args:
|
||||
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
|
||||
conf (np.ndarray): Array of confidence scores of the detections.
|
||||
pred_cls (np.ndarray): Array of predicted classes of the detections.
|
||||
target_cls (np.ndarray): Array of true classes of the detections.
|
||||
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
|
||||
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
|
||||
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
|
||||
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
|
||||
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
|
||||
|
||||
Returns:
|
||||
(tuple): A tuple of six arrays and one array of unique classes, where:
|
||||
tp (np.ndarray): True positive counts for each class.
|
||||
fp (np.ndarray): False positive counts for each class.
|
||||
p (np.ndarray): Precision values at each confidence threshold.
|
||||
r (np.ndarray): Recall values at each confidence threshold.
|
||||
f1 (np.ndarray): F1-score values at each confidence threshold.
|
||||
ap (np.ndarray): Average precision for each class at different IoU thresholds.
|
||||
unique_classes (np.ndarray): An array of unique classes that have data.
|
||||
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
@ -411,6 +426,32 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), na
|
||||
|
||||
|
||||
class Metric:
|
||||
"""
|
||||
Class for computing evaluation metrics for YOLOv8 model.
|
||||
|
||||
Attributes:
|
||||
p (list): Precision for each class. Shape: (nc,).
|
||||
r (list): Recall for each class. Shape: (nc,).
|
||||
f1 (list): F1 score for each class. Shape: (nc,).
|
||||
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
|
||||
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
|
||||
nc (int): Number of classes.
|
||||
|
||||
Methods:
|
||||
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
||||
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
||||
mp(): Mean precision of all classes. Returns: Float.
|
||||
mr(): Mean recall of all classes. Returns: Float.
|
||||
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
|
||||
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
|
||||
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
|
||||
mean_results(): Mean of results, returns mp, mr, map50, map.
|
||||
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
|
||||
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
|
||||
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
|
||||
update(results): Update metric attributes with new evaluation results.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.p = [] # (nc, )
|
||||
@ -420,10 +461,14 @@ class Metric:
|
||||
self.ap_class_index = [] # (nc, )
|
||||
self.nc = 0
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
@property
|
||||
def ap50(self):
|
||||
"""AP@0.5 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap[:, 0] if len(self.all_ap) else []
|
||||
@ -431,7 +476,7 @@ class Metric:
|
||||
@property
|
||||
def ap(self):
|
||||
"""AP@0.5:0.95
|
||||
Return:
|
||||
Returns:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap.mean(1) if len(self.all_ap) else []
|
||||
@ -439,7 +484,7 @@ class Metric:
|
||||
@property
|
||||
def mp(self):
|
||||
"""mean precision of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.p.mean() if len(self.p) else 0.0
|
||||
@ -447,7 +492,7 @@ class Metric:
|
||||
@property
|
||||
def mr(self):
|
||||
"""mean recall of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.r.mean() if len(self.r) else 0.0
|
||||
@ -455,7 +500,7 @@ class Metric:
|
||||
@property
|
||||
def map50(self):
|
||||
"""Mean AP@0.5 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||
@ -463,7 +508,7 @@ class Metric:
|
||||
@property
|
||||
def map75(self):
|
||||
"""Mean AP@0.75 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
|
||||
@ -471,7 +516,7 @@ class Metric:
|
||||
@property
|
||||
def map(self):
|
||||
"""Mean AP@0.5:0.95 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
||||
@ -506,6 +551,32 @@ class Metric:
|
||||
|
||||
|
||||
class DetMetrics:
|
||||
"""
|
||||
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
|
||||
(mAP) of an object detection model.
|
||||
|
||||
Args:
|
||||
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
|
||||
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
|
||||
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
|
||||
|
||||
Attributes:
|
||||
save_dir (Path): A path to the directory where the output plots will be saved.
|
||||
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
|
||||
names (tuple of str): A tuple of strings that represents the names of the classes.
|
||||
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
|
||||
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
|
||||
|
||||
Methods:
|
||||
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
|
||||
keys: Returns a list of keys for accessing the computed detection metrics.
|
||||
mean_results: Returns a list of mean values for the computed detection metrics.
|
||||
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
|
||||
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
|
||||
fitness: Computes the fitness score based on the computed detection metrics.
|
||||
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
|
||||
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
|
||||
"""
|
||||
|
||||
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
@ -514,6 +585,10 @@ class DetMetrics:
|
||||
self.box = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp, conf, pred_cls, target_cls):
|
||||
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
|
||||
names=self.names)[2:]
|
||||
@ -548,6 +623,31 @@ class DetMetrics:
|
||||
|
||||
|
||||
class SegmentMetrics:
|
||||
"""
|
||||
Calculates and aggregates detection and segmentation metrics over a given set of classes.
|
||||
|
||||
Args:
|
||||
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
|
||||
plot (bool): Whether to save the detection and segmentation plots. Default is False.
|
||||
names (list): List of class names. Default is an empty list.
|
||||
|
||||
Attributes:
|
||||
save_dir (Path): Path to the directory where the output plots should be saved.
|
||||
plot (bool): Whether to save the detection and segmentation plots.
|
||||
names (list): List of class names.
|
||||
box (Metric): An instance of the Metric class to calculate box detection metrics.
|
||||
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
|
||||
speed (dict): Dictionary to store the time taken in different phases of inference.
|
||||
|
||||
Methods:
|
||||
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
|
||||
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
|
||||
class_result(i): Returns the detection and segmentation metrics of class `i`.
|
||||
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
|
||||
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
|
||||
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
|
||||
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
|
||||
"""
|
||||
|
||||
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
@ -557,7 +657,22 @@ class SegmentMetrics:
|
||||
self.seg = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
|
||||
"""
|
||||
Processes the detection and segmentation metrics over the given set of predictions.
|
||||
|
||||
Args:
|
||||
tp_m (list): List of True Positive masks.
|
||||
tp_b (list): List of True Positive boxes.
|
||||
conf (list): List of confidence scores.
|
||||
pred_cls (list): List of predicted classes.
|
||||
target_cls (list): List of target classes.
|
||||
"""
|
||||
|
||||
results_mask = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
@ -610,12 +725,32 @@ class SegmentMetrics:
|
||||
|
||||
|
||||
class ClassifyMetrics:
|
||||
"""
|
||||
Class for computing classification metrics including top-1 and top-5 accuracy.
|
||||
|
||||
Attributes:
|
||||
top1 (float): The top-1 accuracy.
|
||||
top5 (float): The top-5 accuracy.
|
||||
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
|
||||
|
||||
Properties:
|
||||
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
|
||||
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
|
||||
keys (List[str]): A list of keys for the results_dict.
|
||||
|
||||
Methods:
|
||||
process(targets, pred): Processes the targets and predictions to compute classification metrics.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.top1 = 0
|
||||
self.top5 = 0
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, targets, pred):
|
||||
# target classes and predicted classes
|
||||
pred, targets = torch.cat(pred), torch.cat(targets)
|
||||
|
@ -301,14 +301,14 @@ def plot_images(images,
|
||||
|
||||
# Plot masks
|
||||
if len(masks):
|
||||
if masks.max() > 1.0: # mean that masks are overlap
|
||||
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
|
||||
image_masks = masks[idx]
|
||||
else: # overlap_masks=True
|
||||
image_masks = masks[[i]] # (1, 640, 640)
|
||||
nl = idx.sum()
|
||||
index = np.arange(nl).reshape(nl, 1, 1) + 1
|
||||
image_masks = np.repeat(image_masks, nl, axis=0)
|
||||
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
||||
else:
|
||||
image_masks = masks[idx]
|
||||
|
||||
im = np.asarray(annotator.im).copy()
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
|
@ -52,7 +52,8 @@ class ClassificationPredictor(BasePredictor):
|
||||
return log_string
|
||||
prob = result.probs
|
||||
# Print results
|
||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
n5 = min(len(self.model.names), 5)
|
||||
top5i = prob.argsort(0, descending=True)[:n5].tolist() # top 5 indices
|
||||
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||
|
||||
# write
|
||||
|
@ -27,7 +27,8 @@ class ClassificationValidator(BaseValidator):
|
||||
return batch
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
self.pred.append(preds.argsort(1, descending=True)[:, :5])
|
||||
n5 = min(len(self.model.names), 5)
|
||||
self.pred.append(preds.argsort(1, descending=True)[:, :n5])
|
||||
self.targets.append(batch['cls'])
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
|
Loading…
x
Reference in New Issue
Block a user