mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.0.29
DDP-cls and default arg fixes (#813)
This commit is contained in:
parent
21ae321bc2
commit
7a7c8dc7b7
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = "8.0.28"
|
||||
__version__ = "8.0.29"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils import ops
|
||||
|
@ -262,8 +262,8 @@ def entrypoint(debug=''):
|
||||
LOGGER.warning(f"WARNING ⚠️ 'format=' is missing. Using default 'format={overrides['format']}'.")
|
||||
|
||||
# Run command in python
|
||||
cfg = get_cfg(overrides=overrides)
|
||||
getattr(model, mode)(**vars(cfg))
|
||||
# getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml
|
||||
getattr(model, mode)(**overrides) # default args from model
|
||||
|
||||
|
||||
# Special modes --------------------------------------------------------------------------------------------------------
|
||||
|
@ -184,9 +184,6 @@ class Exporter:
|
||||
y = model(im) # dry runs
|
||||
if self.args.half and not coreml and not xml:
|
||||
im, model = im.half(), model.half() # to FP16
|
||||
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
||||
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and "
|
||||
f"output shape {shape} ({file_size(file):.1f} MB)")
|
||||
|
||||
# Warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||||
@ -207,6 +204,9 @@ class Exporter:
|
||||
'stride': int(max(model.stride)),
|
||||
'names': model.names} # model metadata
|
||||
|
||||
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and "
|
||||
f"output shape {self.output_shape} ({file_size(file):.1f} MB)")
|
||||
|
||||
# Exports
|
||||
f = [''] * len(fmts) # exported filenames
|
||||
if jit: # TorchScript
|
||||
@ -220,9 +220,8 @@ class Exporter:
|
||||
if coreml: # CoreML
|
||||
f[4], _ = self._export_coreml()
|
||||
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
||||
raise NotImplementedError('YOLOv8 TensorFlow export support is still under development. '
|
||||
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export support is still under development. '
|
||||
'Please consider contributing to the effort if you have TF expertise. Thank you!')
|
||||
assert not isinstance(model, ClassificationModel), 'ClassificationModel TF exports not yet supported.'
|
||||
nms = False
|
||||
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
||||
agnostic_nms=self.args.agnostic_nms or tfjs)
|
||||
@ -236,7 +235,7 @@ class Exporter:
|
||||
agnostic_nms=self.args.agnostic_nms)
|
||||
if edgetpu:
|
||||
f[8], _ = self._export_edgetpu()
|
||||
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(s_model.outputs))
|
||||
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(self.output_shape))
|
||||
if tfjs:
|
||||
f[9], _ = self._export_tfjs()
|
||||
if paddle: # PaddlePaddle
|
||||
@ -552,13 +551,13 @@ class Exporter:
|
||||
return f, keras_model
|
||||
|
||||
@try_export
|
||||
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||
def _export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')):
|
||||
# YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||
import tensorflow as tf # noqa
|
||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
||||
|
||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
f = file.with_suffix('.pb')
|
||||
f = self.file.with_suffix('.pb')
|
||||
|
||||
m = tf.function(lambda x: keras_model(x)) # full model
|
||||
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||||
|
@ -119,7 +119,6 @@ class YOLO:
|
||||
def fuse(self):
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
@ -258,8 +257,6 @@ class YOLO:
|
||||
|
||||
@staticmethod
|
||||
def _reset_ckpt_args(args):
|
||||
for arg in 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', 'save_json', \
|
||||
'half', 'v5loader':
|
||||
for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
|
||||
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots':
|
||||
args.pop(arg, None)
|
||||
|
||||
args["device"] = '' # set device to '' to prevent auto-DDP usage
|
||||
|
@ -457,7 +457,7 @@ class BaseTrainer:
|
||||
def get_validator(self):
|
||||
raise NotImplementedError("get_validator function not implemented in trainer")
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0):
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
||||
"""
|
||||
Returns dataloader derived from torch.data.Dataloader.
|
||||
"""
|
||||
|
@ -485,18 +485,20 @@ def set_sentry():
|
||||
|
||||
if SETTINGS['sync'] and \
|
||||
RANK in {-1, 0} and \
|
||||
sys.argv[0].endswith('yolo') and \
|
||||
not is_pytest_running() and \
|
||||
not is_github_actions_ci() and \
|
||||
((is_pip_package() and not is_git_dir()) or
|
||||
(get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git" and get_git_branch() == "main")):
|
||||
import sentry_sdk # noqa
|
||||
|
||||
import ultralytics
|
||||
import sentry_sdk # noqa
|
||||
from ultralytics import __version__
|
||||
|
||||
sentry_sdk.init(
|
||||
dsn="https://1f331c322109416595df20a91f4005d3@o4504521589325824.ingest.sentry.io/4504521592406016",
|
||||
dsn="https://f805855f03bb4363bc1e16cb7d87b654@o4504521589325824.ingest.sentry.io/4504521592406016",
|
||||
debug=False,
|
||||
traces_sample_rate=1.0,
|
||||
release=ultralytics.__version__,
|
||||
release=__version__,
|
||||
environment='production', # 'dev' or 'production'
|
||||
before_send=before_send,
|
||||
ignore_errors=[KeyboardInterrupt, FileNotFoundError])
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
import contextlib
|
||||
import glob
|
||||
import inspect
|
||||
import math
|
||||
@ -7,9 +7,9 @@ import os
|
||||
import platform
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import urllib
|
||||
from pathlib import Path
|
||||
from subprocess import check_output
|
||||
from typing import Optional
|
||||
|
||||
import cv2
|
||||
@ -155,11 +155,10 @@ def check_online() -> bool:
|
||||
bool: True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
try:
|
||||
# Check host accessibility by attempting to establish a connection
|
||||
socket.create_connection(("1.1.1.1", 443), timeout=5)
|
||||
with contextlib.suppress(subprocess.CalledProcessError):
|
||||
host = socket.gethostbyname("www.github.com")
|
||||
socket.create_connection((host, 80), timeout=2)
|
||||
return True
|
||||
except OSError:
|
||||
return False
|
||||
|
||||
|
||||
@ -181,6 +180,7 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
# Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str)
|
||||
prefix = colorstr('red', 'bold', 'requirements:')
|
||||
check_python() # check python version
|
||||
file = None
|
||||
if isinstance(requirements, Path): # requirements.txt file
|
||||
file = requirements.resolve()
|
||||
assert file.exists(), f"{prefix} {file} not found, check failed."
|
||||
@ -202,9 +202,8 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
LOGGER.info(f"{prefix} YOLOv8 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
||||
try:
|
||||
assert check_online(), "AutoUpdate skipped (offline)"
|
||||
LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
|
||||
source = file if 'file' in locals() else requirements
|
||||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
||||
LOGGER.info(subprocess.check_output(f'pip install {s} {cmds}', shell=True).decode())
|
||||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file or requirements}\n" \
|
||||
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
||||
LOGGER.info(s)
|
||||
except Exception as e:
|
||||
@ -306,7 +305,7 @@ def git_describe(path=ROOT): # path must be a directory
|
||||
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
||||
try:
|
||||
assert (Path(path) / '.git').is_dir()
|
||||
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
||||
return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
||||
except AssertionError:
|
||||
return ''
|
||||
|
||||
|
@ -246,7 +246,7 @@ def intersect_dicts(da, db, exclude=()):
|
||||
|
||||
def is_parallel(model):
|
||||
# Returns True if model is of type DP or DDP
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
|
||||
|
||||
|
||||
def de_parallel(model):
|
||||
|
@ -1,5 +1,4 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
@ -9,7 +8,7 @@ from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
from ultralytics.yolo.engine.trainer import BaseTrainer
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG
|
||||
from ultralytics.yolo.utils.torch_utils import strip_optimizer
|
||||
from ultralytics.yolo.utils.torch_utils import strip_optimizer, is_parallel
|
||||
|
||||
|
||||
class ClassificationTrainer(BaseTrainer):
|
||||
@ -56,7 +55,7 @@ class ClassificationTrainer(BaseTrainer):
|
||||
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
||||
if model.endswith(".pt"):
|
||||
self.model, _ = attempt_load_one_weight(model, device='cpu')
|
||||
for p in model.parameters():
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = True # for training
|
||||
elif model.endswith(".yaml"):
|
||||
self.model = self.get_model(cfg=model)
|
||||
@ -75,8 +74,12 @@ class ClassificationTrainer(BaseTrainer):
|
||||
augment=mode == "train",
|
||||
rank=rank,
|
||||
workers=self.args.workers)
|
||||
# Attach inference transforms
|
||||
if mode != "train":
|
||||
self.model.transforms = loader.dataset.torch_transforms # attach inference transforms
|
||||
if is_parallel(self.model):
|
||||
self.model.module.transforms = loader.dataset.torch_transforms
|
||||
else:
|
||||
self.model.transforms = loader.dataset.torch_transforms
|
||||
return loader
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
|
Loading…
x
Reference in New Issue
Block a user