mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-10-31 22:55:40 +08:00 
			
		
		
		
	Detection support (#60)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
		
							parent
							
								
									5a52e7663a
								
							
						
					
					
						commit
						7ec7cf3aef
					
				
							
								
								
									
										7
									
								
								.github/workflows/ci.yaml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.github/workflows/ci.yaml
									
									
									
									
										vendored
									
									
								
							| @ -90,15 +90,16 @@ jobs: | ||||
|       - name: Test detection | ||||
|         shell: bash  # for Windows compatibility | ||||
|         run: | | ||||
|           echo "TODO" | ||||
|           yolo task=detect mode=train model=yolov5n.yaml data=coco128.yaml epochs=1 img_size=64 | ||||
|           yolo task=detect mode=val model=runs/exp/weights/last.pt img_size=64 | ||||
|       - name: Test segmentation | ||||
|         shell: bash  # for Windows compatibility | ||||
|         # TODO: redo val test without hardcoded weights | ||||
|         run: | | ||||
|           yolo task=segment mode=train model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64 | ||||
|           yolo task=segment mode=val model=runs/exp/weights/last.pt data=coco128-seg.yaml img_size=64 | ||||
|           yolo task=segment mode=val model=runs/exp2/weights/last.pt data=coco128-seg.yaml img_size=64 | ||||
|       - name: Test classification | ||||
|         shell: bash  # for Windows compatibility | ||||
|         run: | | ||||
|           yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 img_size=32 | ||||
|           yolo task=classify mode=val model=runs/exp2/weights/last.pt data=mnist160 | ||||
|           yolo task=classify mode=val model=runs/exp3/weights/last.pt data=mnist160 | ||||
|  | ||||
| @ -459,14 +459,14 @@ def ap_per_class_box_and_mask( | ||||
|         "boxes": { | ||||
|             "p": results_boxes[0], | ||||
|             "r": results_boxes[1], | ||||
|             "ap": results_boxes[3], | ||||
|             "f1": results_boxes[2], | ||||
|             "ap": results_boxes[3], | ||||
|             "ap_class": results_boxes[4]}, | ||||
|         "masks": { | ||||
|             "p": results_masks[0], | ||||
|             "r": results_masks[1], | ||||
|             "ap": results_masks[3], | ||||
|             "f1": results_masks[2], | ||||
|             "ap": results_masks[3], | ||||
|             "ap_class": results_masks[4]}} | ||||
|     return results | ||||
| 
 | ||||
| @ -547,7 +547,7 @@ class Metric: | ||||
|         Args: | ||||
|             results: tuple(p, r, ap, f1, ap_class) | ||||
|         """ | ||||
|         p, r, all_ap, f1, ap_class_index = results | ||||
|         p, r, f1, all_ap, ap_class_index = results | ||||
|         self.p = p | ||||
|         self.r = r | ||||
|         self.all_ap = all_ap | ||||
|  | ||||
| @ -186,7 +186,15 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, | ||||
| 
 | ||||
| 
 | ||||
| @threaded | ||||
| def plot_images_and_masks(images, batch_idx, cls, bboxes, masks, paths, confs=None, fname='images.jpg', names=None): | ||||
| def plot_images_and_masks(images, | ||||
|                           batch_idx, | ||||
|                           cls, | ||||
|                           bboxes, | ||||
|                           masks, | ||||
|                           confs=None, | ||||
|                           paths=None, | ||||
|                           fname='images.jpg', | ||||
|                           names=None): | ||||
|     # Plot image grid with labels | ||||
|     if isinstance(images, torch.Tensor): | ||||
|         images = images.cpu().float().numpy() | ||||
| @ -327,3 +335,99 @@ def output_to_target(output, max_det=300): | ||||
|         targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) | ||||
|     targets = torch.cat(targets, 0).numpy() | ||||
|     return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6] | ||||
| 
 | ||||
| 
 | ||||
| @threaded | ||||
| def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None): | ||||
|     # Plot image grid with labels | ||||
|     if isinstance(images, torch.Tensor): | ||||
|         images = images.cpu().float().numpy() | ||||
|     if isinstance(cls, torch.Tensor): | ||||
|         cls = cls.cpu().numpy() | ||||
|     if isinstance(bboxes, torch.Tensor): | ||||
|         bboxes = bboxes.cpu().numpy() | ||||
|     if isinstance(batch_idx, torch.Tensor): | ||||
|         batch_idx = batch_idx.cpu().numpy() | ||||
| 
 | ||||
|     max_size = 1920  # max image size | ||||
|     max_subplots = 16  # max image subplots, i.e. 4x4 | ||||
|     bs, _, h, w = images.shape  # batch size, _, height, width | ||||
|     bs = min(bs, max_subplots)  # limit plot images | ||||
|     ns = np.ceil(bs ** 0.5)  # number of subplots (square) | ||||
|     if np.max(images[0]) <= 1: | ||||
|         images *= 255  # de-normalise (optional) | ||||
| 
 | ||||
|     # Build Image | ||||
|     mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init | ||||
|     for i, im in enumerate(images): | ||||
|         if i == max_subplots:  # if last batch has fewer images than we expect | ||||
|             break | ||||
|         x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin | ||||
|         im = im.transpose(1, 2, 0) | ||||
|         mosaic[y:y + h, x:x + w, :] = im | ||||
| 
 | ||||
|     # Resize (optional) | ||||
|     scale = max_size / ns / max(h, w) | ||||
|     if scale < 1: | ||||
|         h = math.ceil(scale * h) | ||||
|         w = math.ceil(scale * w) | ||||
|         mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) | ||||
| 
 | ||||
|     # Annotate | ||||
|     fs = int((h + w) * ns * 0.01)  # font size | ||||
|     annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) | ||||
|     for i in range(i + 1): | ||||
|         x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin | ||||
|         annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders | ||||
|         if paths: | ||||
|             annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames | ||||
|         if len(cls) > 0: | ||||
|             idx = batch_idx == i | ||||
| 
 | ||||
|             boxes = xywh2xyxy(bboxes[idx]).T | ||||
|             classes = cls[idx].astype('int') | ||||
|             labels = confs is None  # labels if no conf column | ||||
|             conf = None if labels else confs[idx]  # check for confidence presence (label vs pred) | ||||
| 
 | ||||
|             if boxes.shape[1]: | ||||
|                 if boxes.max() <= 1.01:  # if normalized with tolerance 0.01 | ||||
|                     boxes[[0, 2]] *= w  # scale to pixels | ||||
|                     boxes[[1, 3]] *= h | ||||
|                 elif scale < 1:  # absolute coords need scale if image scales | ||||
|                     boxes *= scale | ||||
|             boxes[[0, 2]] += x | ||||
|             boxes[[1, 3]] += y | ||||
|             for j, box in enumerate(boxes.T.tolist()): | ||||
|                 c = classes[j] | ||||
|                 color = colors(c) | ||||
|                 c = names[c] if names else c | ||||
|                 if labels or conf[j] > 0.25:  # 0.25 conf thresh | ||||
|                     label = f'{c}' if labels else f'{c} {conf[j]:.1f}' | ||||
|                     annotator.box_label(box, label, color=color) | ||||
|     annotator.im.save(fname)  # save | ||||
| 
 | ||||
| 
 | ||||
| def plot_results(file='path/to/results.csv', dir=''): | ||||
|     # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') | ||||
|     save_dir = Path(file).parent if file else Path(dir) | ||||
|     fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | ||||
|     ax = ax.ravel() | ||||
|     files = list(save_dir.glob('results*.csv')) | ||||
|     assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' | ||||
|     for f in files: | ||||
|         try: | ||||
|             data = pd.read_csv(f) | ||||
|             s = [x.strip() for x in data.columns] | ||||
|             x = data.values[:, 0] | ||||
|             for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): | ||||
|                 y = data.values[:, j].astype('float') | ||||
|                 # y[y == 0] = np.nan  # don't show zero values | ||||
|                 ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) | ||||
|                 ax[i].set_title(s[j], fontsize=12) | ||||
|                 # if j in [8, 9, 10]:  # share train and val loss y axes | ||||
|                 #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | ||||
|         except Exception as e: | ||||
|             print(f'Warning: Plotting error for {f}: {e}') | ||||
|     ax[1].legend() | ||||
|     fig.savefig(save_dir / 'results.png', dpi=200) | ||||
|     plt.close() | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| from pathlib import Path | ||||
| 
 | ||||
| from ultralytics.yolo.v8 import classify, segment | ||||
| from ultralytics.yolo.v8 import classify, detect, segment | ||||
| 
 | ||||
| ROOT = Path(__file__).parents[0]  # yolov8 ROOT | ||||
| 
 | ||||
| __all__ = ["classify", "segment"] | ||||
| __all__ = ["classify", "segment", "detect"] | ||||
|  | ||||
							
								
								
									
										2
									
								
								ultralytics/yolo/v8/detect/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								ultralytics/yolo/v8/detect/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,2 @@ | ||||
| from ultralytics.yolo.v8.detect.train import DetectionTrainer, train | ||||
| from ultralytics.yolo.v8.detect.val import DetectionValidator, val | ||||
							
								
								
									
										209
									
								
								ultralytics/yolo/v8/detect/train.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										209
									
								
								ultralytics/yolo/v8/detect/train.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,209 @@ | ||||
| import hydra | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| 
 | ||||
| from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG | ||||
| from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE | ||||
| from ultralytics.yolo.utils.modeling.tasks import DetectionModel | ||||
| from ultralytics.yolo.utils.plotting import plot_images, plot_results | ||||
| from ultralytics.yolo.utils.torch_utils import de_parallel | ||||
| 
 | ||||
| from ..segment import SegmentationTrainer | ||||
| from .val import DetectionValidator | ||||
| 
 | ||||
| 
 | ||||
| # BaseTrainer python usage | ||||
| class DetectionTrainer(SegmentationTrainer): | ||||
| 
 | ||||
|     def load_model(self, model_cfg, weights, data): | ||||
|         model = DetectionModel(model_cfg or weights["model"].yaml, | ||||
|                                ch=3, | ||||
|                                nc=data["nc"], | ||||
|                                anchors=self.args.get("anchors")) | ||||
|         if weights: | ||||
|             model.load(weights) | ||||
|         for _, v in model.named_parameters(): | ||||
|             v.requires_grad = True  # train all layers | ||||
|         return model | ||||
| 
 | ||||
|     def get_validator(self): | ||||
|         return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args) | ||||
| 
 | ||||
|     def criterion(self, preds, batch): | ||||
|         head = de_parallel(self.model).model[-1] | ||||
|         sort_obj_iou = False | ||||
|         autobalance = False | ||||
| 
 | ||||
|         # init losses | ||||
|         BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device)) | ||||
|         BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device)) | ||||
| 
 | ||||
|         # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | ||||
|         cp, cn = smooth_BCE(eps=self.args.label_smoothing)  # positive, negative BCE targets | ||||
| 
 | ||||
|         # Focal loss | ||||
|         g = self.args.fl_gamma | ||||
|         if self.args.fl_gamma > 0: | ||||
|             BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | ||||
| 
 | ||||
|         balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7 | ||||
|         ssi = list(head.stride).index(16) if autobalance else 0  # stride 16 index | ||||
|         BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance | ||||
| 
 | ||||
|         def build_targets(p, targets): | ||||
|             # Build targets for compute_loss(), input targets(image,class,x,y,w,h) | ||||
|             nonlocal head | ||||
|             na, nt = head.na, targets.shape[0]  # number of anchors, targets | ||||
|             tcls, tbox, indices, anch = [], [], [], [] | ||||
|             gain = torch.ones(7, device=self.device)  # normalized to gridspace gain | ||||
|             ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) | ||||
|             targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices | ||||
| 
 | ||||
|             g = 0.5  # bias | ||||
|             off = torch.tensor( | ||||
|                 [ | ||||
|                     [0, 0], | ||||
|                     [1, 0], | ||||
|                     [0, 1], | ||||
|                     [-1, 0], | ||||
|                     [0, -1],  # j,k,l,m | ||||
|                     # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm | ||||
|                 ], | ||||
|                 device=self.device).float() * g  # offsets | ||||
| 
 | ||||
|             for i in range(head.nl): | ||||
|                 anchors, shape = head.anchors[i], p[i].shape | ||||
|                 gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain | ||||
| 
 | ||||
|                 # Match targets to anchors | ||||
|                 t = targets * gain  # shape(3,n,7) | ||||
|                 if nt: | ||||
|                     # Matches | ||||
|                     r = t[..., 4:6] / anchors[:, None]  # wh ratio | ||||
|                     j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t  # compare | ||||
|                     # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | ||||
|                     t = t[j]  # filter | ||||
| 
 | ||||
|                     # Offsets | ||||
|                     gxy = t[:, 2:4]  # grid xy | ||||
|                     gxi = gain[[2, 3]] - gxy  # inverse | ||||
|                     j, k = ((gxy % 1 < g) & (gxy > 1)).T | ||||
|                     l, m = ((gxi % 1 < g) & (gxi > 1)).T | ||||
|                     j = torch.stack((torch.ones_like(j), j, k, l, m)) | ||||
|                     t = t.repeat((5, 1, 1))[j] | ||||
|                     offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | ||||
|                 else: | ||||
|                     t = targets[0] | ||||
|                     offsets = 0 | ||||
| 
 | ||||
|                 # Define | ||||
|                 bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors | ||||
|                 a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class | ||||
|                 gij = (gxy - offsets).long() | ||||
|                 gi, gj = gij.T  # grid indices | ||||
| 
 | ||||
|                 # Append | ||||
|                 indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid | ||||
|                 tbox.append(torch.cat((gxy - gij, gwh), 1))  # box | ||||
|                 anch.append(anchors[a])  # anchors | ||||
|                 tcls.append(c)  # class | ||||
| 
 | ||||
|             return tcls, tbox, indices, anch | ||||
| 
 | ||||
|         if len(preds) == 2:  # eval | ||||
|             _, p = preds | ||||
|         else:  # len(3) train | ||||
|             p = preds | ||||
| 
 | ||||
|         targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) | ||||
|         targets = targets.to(self.device) | ||||
| 
 | ||||
|         lcls = torch.zeros(1, device=self.device) | ||||
|         lbox = torch.zeros(1, device=self.device) | ||||
|         lobj = torch.zeros(1, device=self.device) | ||||
|         tcls, tbox, indices, anchors = build_targets(p, targets) | ||||
| 
 | ||||
|         # Losses | ||||
|         for i, pi in enumerate(p):  # layer index, layer predictions | ||||
|             b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx | ||||
|             tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj | ||||
|             bs = tobj.shape[0] | ||||
|             n = b.shape[0]  # number of targets | ||||
|             if n: | ||||
|                 pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, head.nc), 1)  # subset of predictions | ||||
| 
 | ||||
|                 # Box regression | ||||
|                 pxy = pxy.sigmoid() * 2 - 0.5 | ||||
|                 pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] | ||||
|                 pbox = torch.cat((pxy, pwh), 1)  # predicted box | ||||
|                 iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target) | ||||
|                 lbox += (1.0 - iou).mean()  # iou loss | ||||
| 
 | ||||
|                 # Objectness | ||||
|                 iou = iou.detach().clamp(0).type(tobj.dtype) | ||||
|                 if sort_obj_iou: | ||||
|                     j = iou.argsort() | ||||
|                     b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] | ||||
|                 if gr < 1: | ||||
|                     iou = (1.0 - gr) + gr * iou | ||||
|                 tobj[b, a, gj, gi] = iou  # iou ratio | ||||
| 
 | ||||
|                 # Classification | ||||
|                 if head.nc > 1:  # cls loss (only if multiple classes) | ||||
|                     t = torch.full_like(pcls, cn, device=self.device)  # targets | ||||
|                     t[range(n), tcls[i]] = cp | ||||
|                     lcls += BCEcls(pcls, t)  # BCE | ||||
| 
 | ||||
|             obji = BCEobj(pi[..., 4], tobj) | ||||
|             lobj += obji * balance[i]  # obj loss | ||||
|             if autobalance: | ||||
|                 balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item() | ||||
| 
 | ||||
|         if autobalance: | ||||
|             balance = [x / balance[ssi] for x in balance] | ||||
|         lbox *= self.args.box | ||||
|         lobj *= self.args.obj | ||||
|         lcls *= self.args.cls | ||||
| 
 | ||||
|         loss = lbox + lobj + lcls | ||||
|         return loss * bs, torch.cat((lbox, lobj, lcls)).detach() | ||||
| 
 | ||||
|     # TODO: improve from API users perspective | ||||
|     def label_loss_items(self, loss_items=None, prefix="train"): | ||||
|         # We should just use named tensors here in future | ||||
|         keys = [f"{prefix}/lbox", f"{prefix}/lobj", f"{prefix}/lcls"] | ||||
|         return dict(zip(keys, loss_items)) if loss_items is not None else keys | ||||
| 
 | ||||
|     def progress_string(self): | ||||
|         return ('\n' + '%11s' * 6) % \ | ||||
|                ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Size') | ||||
| 
 | ||||
|     def plot_training_samples(self, batch, ni): | ||||
|         images = batch["img"] | ||||
|         cls = batch["cls"].squeeze(-1) | ||||
|         bboxes = batch["bboxes"] | ||||
|         paths = batch["im_file"] | ||||
|         batch_idx = batch["batch_idx"] | ||||
|         plot_images(images, batch_idx, cls, bboxes, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg") | ||||
| 
 | ||||
|     def plot_metrics(self): | ||||
|         plot_results(file=self.csv)  # save results.png | ||||
| 
 | ||||
| 
 | ||||
| @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) | ||||
| def train(cfg): | ||||
|     cfg.model = cfg.model or "models/yolov5n.yaml" | ||||
|     cfg.data = cfg.data or "coco128.yaml"  # or yolo.ClassificationDataset("mnist") | ||||
|     trainer = DetectionTrainer(cfg) | ||||
|     trainer.train() | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     """ | ||||
|     CLI usage: | ||||
|     python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640 | ||||
| 
 | ||||
|     TODO: | ||||
|     Direct cli support, i.e, yolov8 classify_train args.epochs 10 | ||||
|     """ | ||||
|     train() | ||||
							
								
								
									
										218
									
								
								ultralytics/yolo/v8/detect/val.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										218
									
								
								ultralytics/yolo/v8/detect/val.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,218 @@ | ||||
| import os | ||||
| 
 | ||||
| import hydra | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| 
 | ||||
| from ultralytics.yolo.data import build_dataloader | ||||
| from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG | ||||
| from ultralytics.yolo.engine.validator import BaseValidator | ||||
| from ultralytics.yolo.utils import ops | ||||
| from ultralytics.yolo.utils.checks import check_file, check_requirements | ||||
| from ultralytics.yolo.utils.files import yaml_load | ||||
| from ultralytics.yolo.utils.metrics import ConfusionMatrix, Metric, ap_per_class, box_iou, fitness_detection | ||||
| from ultralytics.yolo.utils.plotting import output_to_target, plot_images | ||||
| from ultralytics.yolo.utils.torch_utils import de_parallel | ||||
| 
 | ||||
| 
 | ||||
| class DetectionValidator(BaseValidator): | ||||
| 
 | ||||
|     def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): | ||||
|         super().__init__(dataloader, save_dir, pbar, logger, args) | ||||
|         if self.args.save_json: | ||||
|             check_requirements(['pycocotools']) | ||||
|             self.process = ops.process_mask_upsample  # more accurate | ||||
|         else: | ||||
|             self.process = ops.process_mask  # faster | ||||
|         self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None | ||||
|         self.is_coco = False | ||||
|         self.class_map = None | ||||
|         self.targets = None | ||||
| 
 | ||||
|     def preprocess(self, batch): | ||||
|         batch["img"] = batch["img"].to(self.device, non_blocking=True) | ||||
|         batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255 | ||||
|         self.nb, _, self.height, self.width = batch["img"].shape  # batch size, channels, height, width | ||||
|         self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) | ||||
|         self.targets = self.targets.to(self.device) | ||||
|         height, width = batch["img"].shape[2:] | ||||
|         self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device)  # to pixels | ||||
|         self.lb = [self.targets[self.targets[:, 0] == i, 1:] | ||||
|                    for i in range(self.nb)] if self.args.save_hybrid else []  # for autolabelling | ||||
| 
 | ||||
|         return batch | ||||
| 
 | ||||
|     def init_metrics(self, model): | ||||
|         if self.training: | ||||
|             head = de_parallel(model).model[-1] | ||||
|         else: | ||||
|             head = de_parallel(model).model.model[-1] | ||||
| 
 | ||||
|         if self.data: | ||||
|             self.is_coco = isinstance(self.data.get('val'), | ||||
|                                       str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt') | ||||
|             self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000)) | ||||
|         self.nc = head.nc | ||||
|         self.names = model.names | ||||
|         if isinstance(self.names, (list, tuple)):  # old format | ||||
|             self.names = dict(enumerate(self.names)) | ||||
| 
 | ||||
|         self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device)  # iou vector for mAP@0.5:0.95 | ||||
|         self.niou = self.iouv.numel() | ||||
|         self.seen = 0 | ||||
|         self.confusion_matrix = ConfusionMatrix(nc=self.nc) | ||||
|         self.metrics = Metric() | ||||
|         self.loss = torch.zeros(4, device=self.device) | ||||
|         self.jdict = [] | ||||
|         self.stats = [] | ||||
| 
 | ||||
|     def get_desc(self): | ||||
|         return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)") | ||||
| 
 | ||||
|     def postprocess(self, preds): | ||||
|         preds = ops.non_max_suppression(preds, | ||||
|                                         self.args.conf_thres, | ||||
|                                         self.args.iou_thres, | ||||
|                                         labels=self.lb, | ||||
|                                         multi_label=True, | ||||
|                                         agnostic=self.args.single_cls, | ||||
|                                         max_det=self.args.max_det) | ||||
|         return preds | ||||
| 
 | ||||
|     def update_metrics(self, preds, batch): | ||||
|         # Metrics | ||||
|         for si, (pred) in enumerate(preds): | ||||
|             labels = self.targets[self.targets[:, 0] == si, 1:] | ||||
|             nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions | ||||
|             shape = batch["ori_shape"][si] | ||||
|             # path = batch["shape"][si][0] | ||||
|             correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device)  # init | ||||
|             self.seen += 1 | ||||
| 
 | ||||
|             if npr == 0: | ||||
|                 if nl: | ||||
|                     self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), labels[:, 0])) | ||||
|                     if self.args.plots: | ||||
|                         self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) | ||||
|                 continue | ||||
| 
 | ||||
|             # Predictions | ||||
|             if self.args.single_cls: | ||||
|                 pred[:, 5] = 0 | ||||
|             predn = pred.clone() | ||||
|             ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape)  # native-space pred | ||||
| 
 | ||||
|             # Evaluate | ||||
|             if nl: | ||||
|                 tbox = ops.xywh2xyxy(labels[:, 1:5])  # target boxes | ||||
|                 ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape)  # native-space labels | ||||
|                 labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels | ||||
|                 correct_bboxes = self._process_batch(predn, labelsn, self.iouv) | ||||
|                 # TODO: maybe remove these `self.` arguments as they already are member variable | ||||
|                 if self.args.plots: | ||||
|                     self.confusion_matrix.process_batch(predn, labelsn) | ||||
|             self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0]))  # (conf, pcls, tcls) | ||||
| 
 | ||||
|             # TODO: Save/log | ||||
|             ''' | ||||
|             if self.args.save_txt: | ||||
|                 save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | ||||
|             if self.args.save_json: | ||||
|                 pred_masks = scale_image(im[si].shape[1:], | ||||
|                                          pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]) | ||||
|                 save_one_json(predn, jdict, path, class_map, pred_masks)  # append to COCO-JSON dictionary | ||||
|             # callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) | ||||
|             ''' | ||||
| 
 | ||||
|     def get_stats(self): | ||||
|         stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)]  # to numpy | ||||
|         if len(stats) and stats[0].any(): | ||||
|             results = ap_per_class(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names) | ||||
|             self.metrics.update(results[2:]) | ||||
|         self.nt_per_class = np.bincount(stats[3].astype(int), minlength=self.nc)  # number of targets per class | ||||
|         metrics = {"fitness": fitness_detection(np.array(self.metrics.mean_results()).reshape(1, -1))} | ||||
|         metrics |= zip(self.metric_keys, self.metrics.mean_results()) | ||||
|         return metrics | ||||
| 
 | ||||
|     def print_results(self): | ||||
|         pf = '%22s' + '%11i' * 2 + '%11.3g' * 4  # print format | ||||
|         self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) | ||||
|         if self.nt_per_class.sum() == 0: | ||||
|             self.logger.warning( | ||||
|                 f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels') | ||||
| 
 | ||||
|         # Print results per class | ||||
|         if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats): | ||||
|             for i, c in enumerate(self.metrics.ap_class_index): | ||||
|                 self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i))) | ||||
| 
 | ||||
|         if self.args.plots: | ||||
|             self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values())) | ||||
| 
 | ||||
|     def _process_batch(self, detections, labels, iouv): | ||||
|         """ | ||||
|         Return correct prediction matrix | ||||
|         Arguments: | ||||
|             detections (array[N, 6]), x1, y1, x2, y2, conf, class | ||||
|             labels (array[M, 5]), class, x1, y1, x2, y2 | ||||
|         Returns: | ||||
|             correct (array[N, 10]), for 10 IoU levels | ||||
|         """ | ||||
|         iou = box_iou(labels[:, 1:], detections[:, :4]) | ||||
|         correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) | ||||
|         correct_class = labels[:, 0:1] == detections[:, 5] | ||||
|         for i in range(len(iouv)): | ||||
|             x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match | ||||
|             if x[0].shape[0]: | ||||
|                 matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), | ||||
|                                     1).cpu().numpy()  # [label, detect, iou] | ||||
|                 if x[0].shape[0] > 1: | ||||
|                     matches = matches[matches[:, 2].argsort()[::-1]] | ||||
|                     matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | ||||
|                     # matches = matches[matches[:, 2].argsort()[::-1]] | ||||
|                     matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | ||||
|                 correct[matches[:, 1].astype(int), i] = True | ||||
|         return torch.tensor(correct, dtype=torch.bool, device=iouv.device) | ||||
| 
 | ||||
|     def get_dataloader(self, dataset_path, batch_size): | ||||
|         # TODO: manage splits differently | ||||
|         # calculate stride - check if model is initialized | ||||
|         gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) | ||||
|         return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0] | ||||
| 
 | ||||
|     # TODO: align with train loss metrics | ||||
|     @property | ||||
|     def metric_keys(self): | ||||
|         return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"] | ||||
| 
 | ||||
|     def plot_val_samples(self, batch, ni): | ||||
|         images = batch["img"] | ||||
|         cls = batch["cls"].squeeze(-1) | ||||
|         bboxes = batch["bboxes"] | ||||
|         paths = batch["im_file"] | ||||
|         batch_idx = batch["batch_idx"] | ||||
|         plot_images(images, | ||||
|                     batch_idx, | ||||
|                     cls, | ||||
|                     bboxes, | ||||
|                     paths=paths, | ||||
|                     fname=self.save_dir / f"val_batch{ni}_labels.jpg", | ||||
|                     names=self.names) | ||||
| 
 | ||||
|     def plot_predictions(self, batch, preds, ni): | ||||
|         images = batch["img"] | ||||
|         paths = batch["im_file"] | ||||
|         plot_images(images, *output_to_target(preds, max_det=15), paths, self.save_dir / f'val_batch{ni}_pred.jpg', | ||||
|                     self.names)  # pred | ||||
| 
 | ||||
| 
 | ||||
| @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) | ||||
| def val(cfg): | ||||
|     cfg.data = cfg.data or "coco128.yaml" | ||||
|     validator = DetectionValidator(args=cfg) | ||||
|     validator(model=cfg.model) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     val() | ||||
| @ -250,7 +250,7 @@ class SegmentationTrainer(BaseTrainer): | ||||
|                               cls, | ||||
|                               bboxes, | ||||
|                               masks, | ||||
|                               paths, | ||||
|                               paths=paths, | ||||
|                               fname=self.save_dir / f"train_batch{ni}.jpg") | ||||
| 
 | ||||
|     def plot_metrics(self): | ||||
|  | ||||
| @ -252,7 +252,7 @@ class SegmentationValidator(BaseValidator): | ||||
|         if len(self.plot_masks): | ||||
|             plot_masks = torch.cat(self.plot_masks, dim=0) | ||||
|         batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15) | ||||
|         plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, paths, conf, | ||||
|         plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths, | ||||
|                               self.save_dir / f'val_batch{ni}_pred.jpg', self.names)  # pred | ||||
|         self.plot_masks.clear() | ||||
| 
 | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Ayush Chaurasia
						Ayush Chaurasia