diff --git a/README.md b/README.md
index 42c5b85f..c60d93b3 100644
--- a/README.md
+++ b/README.md
@@ -124,11 +124,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `yolo val detect data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -141,11 +141,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
- **mAPval** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset.
Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
- **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -158,11 +158,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
| Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
-| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
-| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
-| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
-| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `yolo val segment data=coco-seg.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -175,12 +175,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
| Model | size
(pixels) | mAPpose
50-95 | mAPpose
50 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
-| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
-| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
-| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
-| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
-| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- **mAPval** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org) dataset.
Reproduce by `yolo val pose data=coco-pose.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -193,11 +193,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
| Model | size
(pixels) | mAPtest
50 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
-| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
-| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
-| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
-| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
+| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
+| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
+| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
+| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
+| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- **mAPtest** values are for single-model multi-scale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset.
Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -210,11 +210,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
| Model | size
(pixels) | acc
top1 | acc
top5 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
-| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
-| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
-| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
-| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
-| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
+| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
+| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
+| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
+| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
+| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
diff --git a/README.zh-CN.md b/README.zh-CN.md
index f6df660e..5d9c542c 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -126,11 +126,11 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | mAPval
50-95 | 速度
CPU ONNX
(ms) | 速度
A100 TensorRT
(ms) | 参数
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAPval** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
通过 `yolo val detect data=coco.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
通过 `yolo val detect data=coco.yaml batch=1 device=0|cpu` 复现
@@ -143,11 +143,11 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | mAP验证
50-95 | 速度
CPU ONNX
(毫秒) | 速度
A100 TensorRT
(毫秒) | 参数
(M) | 浮点运算
(B) |
| ----------------------------------------------------------------------------------------- | --------------- | ------------------- | --------------------------- | -------------------------------- | -------------- | ---------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
- **mAP验证** 值适用于在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)数据集上的单模型单尺度。
通过 `yolo val detect data=open-images-v7.yaml device=0` 以复现。
- **速度** 在使用[Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例对Open Image V7验证图像进行平均测算。
通过 `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu` 以复现。
@@ -160,11 +160,11 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | mAPbox
50-95 | mAPmask
50-95 | 速度
CPU ONNX
(ms) | 速度
A100 TensorRT
(ms) | 参数
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
-| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
-| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
-| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
-| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
-| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAPval** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
通过 `yolo val segment data=coco-seg.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
通过 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` 复现
@@ -177,12 +177,12 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | mAPpose
50-95 | mAPpose
50 | 速度
CPU ONNX
(ms) | 速度
A100 TensorRT
(ms) | 参数
(M) | FLOPs
(B) |
| ---------------------------------------------------------------------------------------------------- | --------------- | --------------------- | ------------------ | --------------------------- | -------------------------------- | -------------- | ----------------- |
-| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
-| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
-| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
-| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
-| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
-| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- **mAPval** 值是基于单模型单尺度在 [COCO Keypoints val2017](http://cocodataset.org) 数据集上的结果。
通过 `yolo val pose data=coco-pose.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
通过 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu` 复现
@@ -195,11 +195,11 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | mAPtest
50 | 速度
CPU ONNX
(ms) | 速度
A100 TensorRT
(ms) | 参数
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------- | ------------------ | --------------------------- | -------------------------------- | -------------- | ----------------- |
-| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
-| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
-| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
-| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
-| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
+| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
+| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
+| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
+| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
+| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- **mAPval** 值是基于单模型多尺度在 [DOTAv1](https://captain-whu.github.io/DOTA/index.html) 数据集上的结果。
通过 `yolo val obb data=DOTAv1.yaml device=0 split=test` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
通过 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu` 复现
@@ -212,11 +212,11 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
| 模型 | 尺寸
(像素) | acc
top1 | acc
top5 | 速度
CPU ONNX
(ms) | 速度
A100 TensorRT
(ms) | 参数
(M) | FLOPs
(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | --------------------------- | -------------------------------- | -------------- | ------------------------ |
-| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
-| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
-| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
-| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
-| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
+| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
+| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
+| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
+| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
+| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。
通过 `yolo val classify data=path/to/ImageNet device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。
通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现
diff --git a/docker/Dockerfile b/docker/Dockerfile
index d70db238..b039f927 100644
--- a/docker/Dockerfile
+++ b/docker/Dockerfile
@@ -24,7 +24,7 @@ WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/ultralytics # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
diff --git a/docker/Dockerfile-arm64 b/docker/Dockerfile-arm64
index aedb4f2a..5f029274 100644
--- a/docker/Dockerfile-arm64
+++ b/docker/Dockerfile-arm64
@@ -19,7 +19,7 @@ WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/ultralytics # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
diff --git a/docker/Dockerfile-conda b/docker/Dockerfile-conda
index 73d38d64..fe3aed5f 100644
--- a/docker/Dockerfile-conda
+++ b/docker/Dockerfile-conda
@@ -13,7 +13,7 @@ RUN apt update \
&& apt install --no-install-recommends -y libgl1
# Copy contents
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt .
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt .
# Install conda packages
# mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory'
diff --git a/docker/Dockerfile-cpu b/docker/Dockerfile-cpu
index 52a93a68..31d1ea8c 100644
--- a/docker/Dockerfile-cpu
+++ b/docker/Dockerfile-cpu
@@ -19,7 +19,7 @@ WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/ultralytics # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/
# Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error
RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
diff --git a/docker/Dockerfile-jetson b/docker/Dockerfile-jetson
index a1d850df..61cc2ad9 100644
--- a/docker/Dockerfile-jetson
+++ b/docker/Dockerfile-jetson
@@ -19,7 +19,7 @@ WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/ultralytics # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/
# Remove opencv-python from Ultralytics dependencies as it conflicts with opencv-python installed in base image
RUN grep -v "opencv-python" pyproject.toml > temp.toml && mv temp.toml pyproject.toml
diff --git a/docker/Dockerfile-python b/docker/Dockerfile-python
index e0e33117..55b56ebe 100644
--- a/docker/Dockerfile-python
+++ b/docker/Dockerfile-python
@@ -19,7 +19,7 @@ WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/ultralytics # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
-ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
+ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/
# Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error
# RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
diff --git a/docs/ar/models/yolo-nas.md b/docs/ar/models/yolo-nas.md
index 29ea0cb0..5cffdbe1 100644
--- a/docs/ar/models/yolo-nas.md
+++ b/docs/ar/models/yolo-nas.md
@@ -92,9 +92,9 @@ keywords: YOLO-NAS, Deci AI, كشف الكائنات, deep learning, البحث
| نوع النموذج | أوزان مدربة مسبقًا | المهام المدعومة | الاستدلال | التحقق | التدريب | التصدير |
|-------------|-----------------------------------------------------------------------------------------------|------------------------------------|-----------|--------|---------|---------|
-| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_s.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_m.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_l.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_s.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_m.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_l.pt) | [كشف الكائنات](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
## الاقتباسات والشكر
diff --git a/docs/ar/models/yolov5.md b/docs/ar/models/yolov5.md
index a013f04b..c922faa6 100644
--- a/docs/ar/models/yolov5.md
+++ b/docs/ar/models/yolov5.md
@@ -40,17 +40,17 @@ keywords: YOLOv5u، كشف الكائنات، النماذج المدربة مس
| النموذج | يامل | حجم
(بكسل) | mAPval
50-95 | سرعة
معالج الجهاز ONNX
(مللي ثانية) | سرعة
حويصلة A100 TensorRT
(مللي ثانية) | المعلمات
(مليون) | FLOPs
(بليون) |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
- | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
- | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
- | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
- | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
- | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
+ | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
+ | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
+ | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
+ | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
+ | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
| | | | | | | | |
- | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 42.1 | 211.0 | 1.83 | 4.3 | 7.8 |
- | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 48.6 | 422.6 | 2.34 | 15.3 | 24.6 |
- | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 53.6 | 810.9 | 4.36 | 41.2 | 65.7 |
- | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 55.7 | 1470.9 | 5.47 | 86.1 | 137.4 |
- | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 56.8 | 2436.5 | 8.98 | 155.4 | 250.7 |
+ | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 42.1 | 211.0 | 1.83 | 4.3 | 7.8 |
+ | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 48.6 | 422.6 | 2.34 | 15.3 | 24.6 |
+ | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 53.6 | 810.9 | 4.36 | 41.2 | 65.7 |
+ | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 55.7 | 1470.9 | 5.47 | 86.1 | 137.4 |
+ | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 56.8 | 2436.5 | 8.98 | 155.4 | 250.7 |
## أمثلة للاستخدام
diff --git a/docs/ar/models/yolov8.md b/docs/ar/models/yolov8.md
index 7b2082f3..00ba0ec5 100644
--- a/docs/ar/models/yolov8.md
+++ b/docs/ar/models/yolov8.md
@@ -44,11 +44,11 @@ YOLOv8 هو التطور الأخير في سلسلة YOLO لمكتشفات ال
| النموذج | حجم
(بيكسل) | معدل الكشفالتحقق
50-95 | سرعة
CPU ONNX
(متوسط) | سرعة
A100 TensorRT
(متوسط) | معلمات
(مليون) | FLOPs
(مليون) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
=== "الكشف (صور مفتوحة V7)"
@@ -56,11 +56,11 @@ YOLOv8 هو التطور الأخير في سلسلة YOLO لمكتشفات ال
| النموذج | حجم
(بيكسل) | معدل الكشفالتحقق
50-95 | سرعة
CPU ONNX
(متوسط) | سرعة
A100 TensorRT
(متوسط) | معلمات
(مليون) | FLOPs
(مليون) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
=== "تقسيم الصور إلى أجزاء (COCO)"
@@ -68,11 +68,11 @@ YOLOv8 هو التطور الأخير في سلسلة YOLO لمكتشفات ال
| النموذج | حجم
(بيكسل) | معدل التقسيمالتحقق
50-95 | معدل التقسيمالأقنعة
50-95 | سرعة
CPU ONNX
(متوسط) | سرعة
A100 TensorRT
(متوسط) | معلمات
(مليون) | FLOPs
(مليون) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
=== "التصنيف (ImageNet)"
@@ -80,11 +80,11 @@ YOLOv8 هو التطور الأخير في سلسلة YOLO لمكتشفات ال
| النموذج | حجم
(بيكسل) | دقة أعلى
أعلى 1 | دقة أعلى
أعلى 5 | سرعة
CPU ONNX
(متوسط) | سرعة
A100 TensorRT
(متوسط) | معلمات
(مليون) | FLOPs
(مليون) عند 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
=== "المواقف (COCO)"
@@ -92,12 +92,12 @@ YOLOv8 هو التطور الأخير في سلسلة YOLO لمكتشفات ال
| النموذج | حجم
(بيكسل) | معدل التوضيحالتحقق
50-95 | معدل التوضيح50 | سرعة
CPU ONNX
(متوسط) | سرعة
A100 TensorRT
(متوسط) | معلمات
(مليون) | FLOPs
(مليون) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
## أمثلة استخدام
diff --git a/docs/ar/tasks/classify.md b/docs/ar/tasks/classify.md
index b0dadf4e..8841dda9 100644
--- a/docs/ar/tasks/classify.md
+++ b/docs/ar/tasks/classify.md
@@ -24,11 +24,11 @@ keywords: Ultralytics، YOLOv8، تصنيف الصور، النماذج المد
| النموذج | الحجم
(بكسل) | دقة (أعلى 1)
acc | دقة (أعلى 5)
acc | سرعة التنفيذ
ONNX للوحدة المركزية
(مللي ثانية) | سرعة التنفيذ
A100 TensorRT
(مللي ثانية) | المعلمات
(مليون) | FLOPs
(مليار) لحجم 640 |
|----------------------------------------------------------------------------------------------|----------------------|--------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------|--------------------------|--------------------------------|
-| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
-| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
-| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
-| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
-| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
+| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
+| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
+| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
+| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
+| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- قيمة **acc** هي دقة النماذج على مجموعة بيانات التحقق [ImageNet](https://www.image-net.org/).
لإعادة إنتاج ذلك، استخدم `yolo val classify data=path/to/ImageNet device=0`
diff --git a/docs/ar/tasks/detect.md b/docs/ar/tasks/detect.md
index 644269a0..7410b7c9 100644
--- a/docs/ar/tasks/detect.md
+++ b/docs/ar/tasks/detect.md
@@ -35,11 +35,11 @@ Task التعرف على الكائنات هو عبارة عن تعرف على
| النموذج | الحجم
(بكسل) | mAPval
50-95 | السرعة
CPU ONNX
(مللي ثانية) | السرعة
A100 TensorRT
(مللي ثانية) | الوزن
(ميغا) | FLOPs
(مليار) |
|--------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------|----------------------------------------------|----------------------|-----------------------|
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- قيم mAPval تنطبق على مقياس نموذج واحد-مقياس واحد على مجموعة بيانات [COCO val2017](http://cocodataset.org).
اعيد حسابها بواسطة `yolo val detect data=coco.yaml device=0`
diff --git a/docs/ar/tasks/pose.md b/docs/ar/tasks/pose.md
index 8ac17718..b37ad1f4 100644
--- a/docs/ar/tasks/pose.md
+++ b/docs/ar/tasks/pose.md
@@ -33,12 +33,12 @@ keywords: Ultralytics، YOLO، YOLOv8، تقدير الوضعية ، كشف نق
| النموذج | الحجم (بالبكسل) | mAPالوضعية 50-95 | mAPالوضعية 50 | سرعةالوحدة المركزية ONNX(ms) | سرعةA100 TensorRT(ms) | المعلمات (مليون) | FLOPs (بالمليار) |
|------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------------------|----------------------------------------|---------------------------------|------------------|------------------|
-| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
-| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
-| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
-| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
-| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
-| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- تعتبر القيم **mAPval** لنموذج واحد ومقياس واحد فقط على [COCO Keypoints val2017](http://cocodataset.org)
مجموعة البيانات.
diff --git a/docs/ar/tasks/segment.md b/docs/ar/tasks/segment.md
index 85f7d39e..2cd14cbc 100644
--- a/docs/ar/tasks/segment.md
+++ b/docs/ar/tasks/segment.md
@@ -35,11 +35,11 @@ keywords: yolov8 ، فصل الأشكال الفردية ، Ultralytics ، مج
| النموذج | الحجم
بكسل | mAPbox
50-95 | mAPmask
50-95 | السرعة
CPU ONNX
(مللي ثانية) | السرعة
A100 TensorRT
(مللي ثانية) | المعلمات
(مليون) | FLOPs
(مليار) |
|----------------------------------------------------------------------------------------------|--------------------|----------------------|-----------------------|-----------------------------------------|----------------------------------------------|--------------------------|-----------------------|
-| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
-| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
-| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
-| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
-| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- تُستخدم قيم **mAPval** لنموذج واحد وحجم واحد على مجموعة بيانات [COCO val2017](http://cocodataset.org).
يمكن إعادة إنتاجها باستخدام `yolo val segment data=coco.yaml device=0`
diff --git a/docs/de/models/yolo-nas.md b/docs/de/models/yolo-nas.md
index c1d8ed76..952aa2dc 100644
--- a/docs/de/models/yolo-nas.md
+++ b/docs/de/models/yolo-nas.md
@@ -92,9 +92,9 @@ Im Folgenden finden Sie eine detaillierte Übersicht über jedes Modell, einschl
| Modelltyp | Vortrainierte Gewichte | Unterstützte Aufgaben | Inferenz | Validierung | Training | Export |
|------------|-----------------------------------------------------------------------------------------------|---------------------------------------|----------|-------------|----------|--------|
-| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_s.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_m.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_l.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_s.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_m.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_l.pt) | [Objekterkennung](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
## Zitierungen und Danksagungen
diff --git a/docs/de/models/yolov5.md b/docs/de/models/yolov5.md
index b194f125..04942606 100644
--- a/docs/de/models/yolov5.md
+++ b/docs/de/models/yolov5.md
@@ -40,17 +40,17 @@ Diese Tabelle bietet eine detaillierte Übersicht über die verschiedenen Varian
| Modell | YAML | Größe
(Pixel) | mAPval
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------------------------------------|-----------------------------------------------|--------------------|-------------------|
- | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34,3 | 73,6 | 1,06 | 2,6 | 7,7 |
- | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43,0 | 120,7 | 1,27 | 9,1 | 24,0 |
- | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49,0 | 233,9 | 1,86 | 25,1 | 64,2 |
- | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52,2 | 408,4 | 2,50 | 53,2 | 135,0 |
- | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53,2 | 763,2 | 3,81 | 97,2 | 246,4 |
+ | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34,3 | 73,6 | 1,06 | 2,6 | 7,7 |
+ | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43,0 | 120,7 | 1,27 | 9,1 | 24,0 |
+ | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49,0 | 233,9 | 1,86 | 25,1 | 64,2 |
+ | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52,2 | 408,4 | 2,50 | 53,2 | 135,0 |
+ | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53,2 | 763,2 | 3,81 | 97,2 | 246,4 |
| | | | | | | | |
- | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 42,1 | 211,0 | 1,83 | 4,3 | 7,8 |
- | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 48,6 | 422,6 | 2,34 | 15,3 | 24,6 |
- | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 53,6 | 810,9 | 4,36 | 41,2 | 65,7 |
- | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 55,7 | 1.470,9 | 5,47 | 86,1 | 137,4 |
- | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 56,8 | 2.436,5 | 8,98 | 155,4 | 250,7 |
+ | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 42,1 | 211,0 | 1,83 | 4,3 | 7,8 |
+ | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 48,6 | 422,6 | 2,34 | 15,3 | 24,6 |
+ | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 53,6 | 810,9 | 4,36 | 41,2 | 65,7 |
+ | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 55,7 | 1.470,9 | 5,47 | 86,1 | 137,4 |
+ | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1.280 | 56,8 | 2.436,5 | 8,98 | 155,4 | 250,7 |
## Beispiele zur Verwendung
diff --git a/docs/de/models/yolov8.md b/docs/de/models/yolov8.md
index e24ca969..5229e8b3 100644
--- a/docs/de/models/yolov8.md
+++ b/docs/de/models/yolov8.md
@@ -44,11 +44,11 @@ Diese Tabelle gibt einen Überblick über die verschiedenen Varianten des YOLOv8
| Modell | Größe
(Pixel) | mAPval
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ---------------------------------------- | --------------------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37,3 | 80,4 | 0,99 | 3,2 | 8,7 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44,9 | 128,4 | 1,20 | 11,2 | 28,6 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50,2 | 234,7 | 1,83 | 25,9 | 78,9 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52,9 | 375,2 | 2,39 | 43,7 | 165,2 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53,9 | 479,1 | 3,53 | 68,2 | 257,8 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37,3 | 80,4 | 0,99 | 3,2 | 8,7 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44,9 | 128,4 | 1,20 | 11,2 | 28,6 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50,2 | 234,7 | 1,83 | 25,9 | 78,9 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52,9 | 375,2 | 2,39 | 43,7 | 165,2 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53,9 | 479,1 | 3,53 | 68,2 | 257,8 |
=== "Objekterkennung (Open Images V7)"
@@ -56,11 +56,11 @@ Diese Tabelle gibt einen Überblick über die verschiedenen Varianten des YOLOv8
| Modell | Größe
(Pixel) | mAPval
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ---------------------------------------- | --------------------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18,4 | 142,4 | 1,21 | 3,5 | 10,5 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27,7 | 183,1 | 1,40 | 11,4 | 29,7 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33,6 | 408,5 | 2,26 | 26,2 | 80,6 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34,9 | 596,9 | 2,43 | 44,1 | 167,4 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36,3 | 860,6 | 3,56 | 68,7 | 260,6 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18,4 | 142,4 | 1,21 | 3,5 | 10,5 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27,7 | 183,1 | 1,40 | 11,4 | 29,7 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33,6 | 408,5 | 2,26 | 26,2 | 80,6 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34,9 | 596,9 | 2,43 | 44,1 | 167,4 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36,3 | 860,6 | 3,56 | 68,7 | 260,6 |
=== "Segmentierung (COCO)"
@@ -68,11 +68,11 @@ Diese Tabelle gibt einen Überblick über die verschiedenen Varianten des YOLOv8
| Modell | Größe
(Pixel) | mAPbox
50-95 | mAPmask
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | --------------------- | --------------------- | ---------------------------------------- | --------------------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36,7 | 30,5 | 96,1 | 1,21 | 3,4 | 12,6 |
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44,6 | 36,8 | 155,7 | 1,47 | 11,8 | 42,6 |
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49,9 | 40,8 | 317,0 | 2,18 | 27,3 | 110,2 |
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52,3 | 42,6 | 572,4 | 2,79 | 46,0 | 220,5 |
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53,4 | 43,4 | 712,1 | 4,02 | 71,8 | 344,1 |
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36,7 | 30,5 | 96,1 | 1,21 | 3,4 | 12,6 |
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44,6 | 36,8 | 155,7 | 1,47 | 11,8 | 42,6 |
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49,9 | 40,8 | 317,0 | 2,18 | 27,3 | 110,2 |
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52,3 | 42,6 | 572,4 | 2,79 | 46,0 | 220,5 |
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53,4 | 43,4 | 712,1 | 4,02 | 71,8 | 344,1 |
=== "Klassifikation (ImageNet)"
@@ -80,11 +80,11 @@ Diese Tabelle gibt einen Überblick über die verschiedenen Varianten des YOLOv8
| Modell | Größe
(Pixel) | acc
top1 | acc
top5 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) bei 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ---------------------------------------- | --------------------------------------------- | ------------------ | ------------------------ |
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66,6 | 87,0 | 12,9 | 0,31 | 2,7 | 4,3 |
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72,3 | 91,1 | 23,4 | 0,35 | 6,4 | 13,5 |
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76,4 | 93,2 | 85,4 | 0,62 | 17,0 | 42,7 |
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78,0 | 94,1 | 163,0 | 0,87 | 37,5 | 99,7 |
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78,4 | 94,3 | 232,0 | 1,01 | 57,4 | 154,8 |
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 66,6 | 87,0 | 12,9 | 0,31 | 2,7 | 4,3 |
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 72,3 | 91,1 | 23,4 | 0,35 | 6,4 | 13,5 |
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76,4 | 93,2 | 85,4 | 0,62 | 17,0 | 42,7 |
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 78,0 | 94,1 | 163,0 | 0,87 | 37,5 | 99,7 |
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 78,4 | 94,3 | 232,0 | 1,01 | 57,4 | 154,8 |
=== "Pose (COCO)"
@@ -92,12 +92,12 @@ Diese Tabelle gibt einen Überblick über die verschiedenen Varianten des YOLOv8
| Modell | Größe
(Pixel) | mAPpose
50-95 | mAPpose
50 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ---------------------------------------- | --------------------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50,4 | 80,1 | 131,8 | 1,18 | 3,3 | 9,2 |
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60,0 | 86,2 | 233,2 | 1,42 | 11,6 | 30,2 |
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65,0 | 88,8 | 456,3 | 2,00 | 26,4 | 81,0 |
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67,6 | 90,0 | 784,5 | 2,59 | 44,4 | 168,6 |
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69,2 | 90,2 | 1607,1 | 3,73 | 69,4 | 263,2 |
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71,6 | 91,2 | 4088,7 | 10,04 | 99,1 | 1066,4 |
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50,4 | 80,1 | 131,8 | 1,18 | 3,3 | 9,2 |
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60,0 | 86,2 | 233,2 | 1,42 | 11,6 | 30,2 |
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65,0 | 88,8 | 456,3 | 2,00 | 26,4 | 81,0 |
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67,6 | 90,0 | 784,5 | 2,59 | 44,4 | 168,6 |
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69,2 | 90,2 | 1607,1 | 3,73 | 69,4 | 263,2 |
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71,6 | 91,2 | 4088,7 | 10,04 | 99,1 | 1066,4 |
## Beispiele zur Verwendung
diff --git a/docs/de/tasks/classify.md b/docs/de/tasks/classify.md
index 09622a06..bc2cf9ff 100644
--- a/docs/de/tasks/classify.md
+++ b/docs/de/tasks/classify.md
@@ -24,11 +24,11 @@ Hier werden vortrainierte YOLOv8 Classify-Modelle gezeigt. Detect-, Segment- und
| Modell | Größe
(Pixel) | Genauigkeit
top1 | Genauigkeit
top5 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) bei 640 |
|----------------------------------------------------------------------------------------------|-----------------------|--------------------------|--------------------------|------------------------------------------|-----------------------------------------------|-----------------------|---------------------------|
-| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
-| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
-| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
-| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
-| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
+| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
+| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
+| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
+| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
+| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- **Genauigkeit**-Werte sind Modellgenauigkeiten auf dem [ImageNet](https://www.image-net.org/)-Datensatz Validierungsset.
Zur Reproduktion `yolo val classify data=pfad/zu/ImageNet device=0 verwenden`
diff --git a/docs/de/tasks/detect.md b/docs/de/tasks/detect.md
index ab2848cc..151335ec 100644
--- a/docs/de/tasks/detect.md
+++ b/docs/de/tasks/detect.md
@@ -35,11 +35,11 @@ Hier werden die vortrainierten YOLOv8 Detect Modelle gezeigt. Detect, Segment un
| Modell | Größe
(Pixel) | mAPval
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
|--------------------------------------------------------------------------------------|-----------------------|----------------------|------------------------------------------|-----------------------------------------------|--------------------|-------------------|
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAPval** Werte sind für Single-Modell Single-Scale auf dem [COCO val2017](http://cocodataset.org) Datensatz.
Reproduzieren mit `yolo val detect data=coco.yaml device=0`
diff --git a/docs/de/tasks/pose.md b/docs/de/tasks/pose.md
index 14d0f25b..b9d5ffae 100644
--- a/docs/de/tasks/pose.md
+++ b/docs/de/tasks/pose.md
@@ -35,12 +35,12 @@ Hier werden vortrainierte YOLOv8 Pose-Modelle gezeigt. Erkennungs-, Segmentierun
| Modell | Größe
(Pixel) | mAPpose
50-95 | mAPpose
50 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|------------------------------------------|-----------------------------------------------|-----------------------|-------------------|
-| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50,4 | 80,1 | 131,8 | 1,18 | 3,3 | 9,2 |
-| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60,0 | 86,2 | 233,2 | 1,42 | 11,6 | 30,2 |
-| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65,0 | 88,8 | 456,3 | 2,00 | 26,4 | 81,0 |
-| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67,6 | 90,0 | 784,5 | 2,59 | 44,4 | 168,6 |
-| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69,2 | 90,2 | 1607,1 | 3,73 | 69,4 | 263,2 |
-| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71,6 | 91,2 | 4088,7 | 10,04 | 99,1 | 1066,4 |
+| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50,4 | 80,1 | 131,8 | 1,18 | 3,3 | 9,2 |
+| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60,0 | 86,2 | 233,2 | 1,42 | 11,6 | 30,2 |
+| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65,0 | 88,8 | 456,3 | 2,00 | 26,4 | 81,0 |
+| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67,6 | 90,0 | 784,5 | 2,59 | 44,4 | 168,6 |
+| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69,2 | 90,2 | 1607,1 | 3,73 | 69,4 | 263,2 |
+| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71,6 | 91,2 | 4088,7 | 10,04 | 99,1 | 1066,4 |
- **mAPval** Werte gelten für ein einzelnes Modell mit einfacher Skala auf dem [COCO Keypoints val2017](http://cocodataset.org)-Datensatz.
Zu reproduzieren mit `yolo val pose data=coco-pose.yaml device=0`.
diff --git a/docs/de/tasks/segment.md b/docs/de/tasks/segment.md
index a70909f8..3f476acc 100644
--- a/docs/de/tasks/segment.md
+++ b/docs/de/tasks/segment.md
@@ -35,11 +35,11 @@ Hier werden vortrainierte YOLOv8 Segment-Modelle gezeigt. Detect-, Segment- und
| Modell | Größe
(Pixel) | mAPKasten
50-95 | mAPMasken
50-95 | Geschwindigkeit
CPU ONNX
(ms) | Geschwindigkeit
A100 TensorRT
(ms) | Parameter
(M) | FLOPs
(B) |
|----------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------------|------------------------------------------|-----------------------------------------------|-----------------------|-------------------|
-| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
-| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
-| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
-| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
-| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- Die **mAPval**-Werte sind für ein einzelnes Modell, einzelne Skala auf dem [COCO val2017](http://cocodataset.org)-Datensatz.
Zum Reproduzieren nutzen Sie `yolo val segment data=coco.yaml device=0`
diff --git a/docs/en/models/yolo-nas.md b/docs/en/models/yolo-nas.md
index e0cd9a17..d25a0f7f 100644
--- a/docs/en/models/yolo-nas.md
+++ b/docs/en/models/yolo-nas.md
@@ -91,9 +91,9 @@ Below is a detailed overview of each model, including links to their pre-trained
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
|------------|-----------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------|----------|--------|
-| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_s.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_m.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
-| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolo_nas_l.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-s | [yolo_nas_s.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_s.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-m | [yolo_nas_m.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_m.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
+| YOLO-NAS-l | [yolo_nas_l.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolo_nas_l.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ✅ |
## Citations and Acknowledgements
diff --git a/docs/en/models/yolov5.md b/docs/en/models/yolov5.md
index 04924b56..50accac0 100644
--- a/docs/en/models/yolov5.md
+++ b/docs/en/models/yolov5.md
@@ -40,17 +40,17 @@ This table provides a detailed overview of the YOLOv5u model variants, highlight
| Model | YAML | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
- | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
- | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
- | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
- | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
- | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
+ | [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
+ | [yolov5su.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5su.pt) | [yolov5s.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
+ | [yolov5mu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5mu.pt) | [yolov5m.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
+ | [yolov5lu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5lu.pt) | [yolov5l.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
+ | [yolov5xu.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5xu.pt) | [yolov5x.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
| | | | | | | | |
- | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 42.1 | 211.0 | 1.83 | 4.3 | 7.8 |
- | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 48.6 | 422.6 | 2.34 | 15.3 | 24.6 |
- | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 53.6 | 810.9 | 4.36 | 41.2 | 65.7 |
- | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 55.7 | 1470.9 | 5.47 | 86.1 | 137.4 |
- | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 56.8 | 2436.5 | 8.98 | 155.4 | 250.7 |
+ | [yolov5n6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5n6u.pt) | [yolov5n6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 42.1 | 211.0 | 1.83 | 4.3 | 7.8 |
+ | [yolov5s6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5s6u.pt) | [yolov5s6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 48.6 | 422.6 | 2.34 | 15.3 | 24.6 |
+ | [yolov5m6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5m6u.pt) | [yolov5m6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 53.6 | 810.9 | 4.36 | 41.2 | 65.7 |
+ | [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 55.7 | 1470.9 | 5.47 | 86.1 | 137.4 |
+ | [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 56.8 | 2436.5 | 8.98 | 155.4 | 250.7 |
## Usage Examples
diff --git a/docs/en/models/yolov8.md b/docs/en/models/yolov8.md
index 061ee45d..6e3f53cc 100644
--- a/docs/en/models/yolov8.md
+++ b/docs/en/models/yolov8.md
@@ -56,11 +56,11 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
=== "Detection (Open Images V7)"
@@ -68,11 +68,11 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
=== "Segmentation (COCO)"
@@ -80,11 +80,11 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
=== "Classification (ImageNet)"
@@ -92,11 +92,11 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | acc
top1 | acc
top5 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
=== "Pose (COCO)"
@@ -104,12 +104,12 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | mAPpose
50-95 | mAPpose
50 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
=== "OBB (DOTAv1)"
@@ -117,11 +117,11 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
| Model | size
(pixels) | mAPtest
50 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
|----------------------------------------------------------------------------------------------|-----------------------| -------------------- | -------------------------------- | ------------------------------------- | -------------------- | ----------------- |
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
## Usage Examples
diff --git a/docs/en/tasks/classify.md b/docs/en/tasks/classify.md
index de8e26ad..5df8f813 100644
--- a/docs/en/tasks/classify.md
+++ b/docs/en/tasks/classify.md
@@ -35,11 +35,11 @@ YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose model
| Model | size