mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:14:55 +08:00
Support FastSAM directory inference and plot (#4634)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
620335de27
commit
8596ee241f
@ -22,7 +22,7 @@ class FastSAMPredictor(DetectionPredictor):
|
|||||||
max_det=self.args.max_det,
|
max_det=self.args.max_det,
|
||||||
nc=len(self.model.names),
|
nc=len(self.model.names),
|
||||||
classes=self.args.classes)
|
classes=self.args.classes)
|
||||||
full_box = torch.zeros_like(p[0][0])
|
full_box = torch.zeros(p[0].shape[1])
|
||||||
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
|
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
|
||||||
full_box = full_box.view(1, -1)
|
full_box = full_box.view(1, -1)
|
||||||
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
|
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
|
||||||
|
@ -8,18 +8,17 @@ import matplotlib.pyplot as plt
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
from ultralytics.utils import LOGGER
|
from ultralytics.utils import TQDM_BAR_FORMAT
|
||||||
|
|
||||||
|
|
||||||
class FastSAMPrompt:
|
class FastSAMPrompt:
|
||||||
|
|
||||||
def __init__(self, img_path, results, device='cuda') -> None:
|
def __init__(self, source, results, device='cuda') -> None:
|
||||||
# self.img_path = img_path
|
|
||||||
self.device = device
|
self.device = device
|
||||||
self.results = results
|
self.results = results
|
||||||
self.img_path = str(img_path)
|
self.source = source
|
||||||
self.ori_img = cv2.imread(self.img_path)
|
|
||||||
|
|
||||||
# Import and assign clip
|
# Import and assign clip
|
||||||
try:
|
try:
|
||||||
@ -48,7 +47,7 @@ class FastSAMPrompt:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def _format_results(result, filter=0):
|
def _format_results(result, filter=0):
|
||||||
annotations = []
|
annotations = []
|
||||||
n = len(result.masks.data)
|
n = len(result.masks.data) if result.masks is not None else 0
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
mask = result.masks.data[i] == 1.0
|
mask = result.masks.data[i] == 1.0
|
||||||
if torch.sum(mask) >= filter:
|
if torch.sum(mask) >= filter:
|
||||||
@ -86,69 +85,79 @@ class FastSAMPrompt:
|
|||||||
mask_random_color=True,
|
mask_random_color=True,
|
||||||
better_quality=True,
|
better_quality=True,
|
||||||
retina=False,
|
retina=False,
|
||||||
with_countouers=True):
|
withContours=True):
|
||||||
if isinstance(annotations[0], dict):
|
n = len(annotations)
|
||||||
annotations = [annotation['segmentation'] for annotation in annotations]
|
pbar = tqdm(annotations, total=n, bar_format=TQDM_BAR_FORMAT)
|
||||||
if isinstance(annotations, torch.Tensor):
|
for ann in pbar:
|
||||||
annotations = annotations.cpu().numpy()
|
result_name = os.path.basename(ann.path)
|
||||||
result_name = os.path.basename(self.img_path)
|
image = ann.orig_img
|
||||||
image = self.ori_img
|
original_h, original_w = ann.orig_shape
|
||||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
# for macOS only
|
||||||
original_h = image.shape[0]
|
# plt.switch_backend('TkAgg')
|
||||||
original_w = image.shape[1]
|
plt.figure(figsize=(original_w / 100, original_h / 100))
|
||||||
# for macOS only
|
# Add subplot with no margin.
|
||||||
# plt.switch_backend('TkAgg')
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
||||||
fig = plt.figure(figsize=(original_w / 100, original_h / 100))
|
plt.margins(0, 0)
|
||||||
# Add subplot with no margin.
|
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
||||||
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
||||||
plt.margins(0, 0)
|
plt.imshow(image)
|
||||||
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
|
||||||
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
|
||||||
|
|
||||||
plt.imshow(image)
|
if ann.masks is not None:
|
||||||
if better_quality:
|
masks = ann.masks.data
|
||||||
for i, mask in enumerate(annotations):
|
if better_quality:
|
||||||
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
if isinstance(masks[0], torch.Tensor):
|
||||||
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
masks = np.array(masks.cpu())
|
||||||
self.fast_show_mask(
|
for i, mask in enumerate(masks):
|
||||||
annotations,
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
||||||
plt.gca(),
|
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
||||||
random_color=mask_random_color,
|
|
||||||
bbox=bbox,
|
|
||||||
points=points,
|
|
||||||
pointlabel=point_label,
|
|
||||||
retinamask=retina,
|
|
||||||
target_height=original_h,
|
|
||||||
target_width=original_w,
|
|
||||||
)
|
|
||||||
|
|
||||||
if with_countouers:
|
self.fast_show_mask(
|
||||||
contour_all = []
|
masks,
|
||||||
temp = np.zeros((original_h, original_w, 1))
|
plt.gca(),
|
||||||
for i, mask in enumerate(annotations):
|
random_color=mask_random_color,
|
||||||
if isinstance(mask, dict):
|
bbox=bbox,
|
||||||
mask = mask['segmentation']
|
points=points,
|
||||||
annotation = mask.astype(np.uint8)
|
pointlabel=point_label,
|
||||||
if not retina:
|
retinamask=retina,
|
||||||
annotation = cv2.resize(
|
target_height=original_h,
|
||||||
annotation,
|
target_width=original_w,
|
||||||
(original_w, original_h),
|
)
|
||||||
interpolation=cv2.INTER_NEAREST,
|
|
||||||
)
|
|
||||||
contours, hierarchy = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
contour_all.extend(iter(contours))
|
|
||||||
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
|
||||||
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
|
|
||||||
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
||||||
plt.imshow(contour_mask)
|
|
||||||
|
|
||||||
save_path = Path(output) / result_name
|
if withContours:
|
||||||
save_path.parent.mkdir(exist_ok=True, parents=True)
|
contour_all = []
|
||||||
plt.axis('off')
|
temp = np.zeros((original_h, original_w, 1))
|
||||||
fig.savefig(save_path)
|
for i, mask in enumerate(masks):
|
||||||
LOGGER.info(f'Saved to {save_path.absolute()}')
|
mask = mask.astype(np.uint8)
|
||||||
|
if not retina:
|
||||||
|
mask = cv2.resize(
|
||||||
|
mask,
|
||||||
|
(original_w, original_h),
|
||||||
|
interpolation=cv2.INTER_NEAREST,
|
||||||
|
)
|
||||||
|
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
contour_all.extend(iter(contours))
|
||||||
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
||||||
|
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
|
||||||
|
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
||||||
|
plt.imshow(contour_mask)
|
||||||
|
|
||||||
|
plt.axis('off')
|
||||||
|
fig = plt.gcf()
|
||||||
|
|
||||||
|
try:
|
||||||
|
buf = fig.canvas.tostring_rgb()
|
||||||
|
except AttributeError:
|
||||||
|
fig.canvas.draw()
|
||||||
|
buf = fig.canvas.tostring_rgb()
|
||||||
|
cols, rows = fig.canvas.get_width_height()
|
||||||
|
img_array = np.frombuffer(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
||||||
|
|
||||||
|
save_path = Path(output) / result_name
|
||||||
|
save_path.parent.mkdir(exist_ok=True, parents=True)
|
||||||
|
cv2.imwrite(str(save_path), img_array)
|
||||||
|
plt.close()
|
||||||
|
pbar.set_description('Saving {} to {}'.format(result_name, save_path))
|
||||||
|
|
||||||
# CPU post process
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fast_show_mask(
|
def fast_show_mask(
|
||||||
annotation,
|
annotation,
|
||||||
@ -215,8 +224,9 @@ class FastSAMPrompt:
|
|||||||
return probs[:, 0].softmax(dim=0)
|
return probs[:, 0].softmax(dim=0)
|
||||||
|
|
||||||
def _crop_image(self, format_results):
|
def _crop_image(self, format_results):
|
||||||
|
if os.path.isdir(self.source):
|
||||||
image = Image.fromarray(cv2.cvtColor(self.ori_img, cv2.COLOR_BGR2RGB))
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||||
|
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
|
||||||
ori_w, ori_h = image.size
|
ori_w, ori_h = image.size
|
||||||
annotations = format_results
|
annotations = format_results
|
||||||
mask_h, mask_w = annotations[0]['segmentation'].shape
|
mask_h, mask_w = annotations[0]['segmentation'].shape
|
||||||
@ -237,65 +247,71 @@ class FastSAMPrompt:
|
|||||||
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
||||||
|
|
||||||
def box_prompt(self, bbox):
|
def box_prompt(self, bbox):
|
||||||
|
if self.results[0].masks is not None:
|
||||||
|
assert (bbox[2] != 0 and bbox[3] != 0)
|
||||||
|
if os.path.isdir(self.source):
|
||||||
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||||
|
masks = self.results[0].masks.data
|
||||||
|
target_height, target_width = self.results[0].orig_shape
|
||||||
|
h = masks.shape[1]
|
||||||
|
w = masks.shape[2]
|
||||||
|
if h != target_height or w != target_width:
|
||||||
|
bbox = [
|
||||||
|
int(bbox[0] * w / target_width),
|
||||||
|
int(bbox[1] * h / target_height),
|
||||||
|
int(bbox[2] * w / target_width),
|
||||||
|
int(bbox[3] * h / target_height), ]
|
||||||
|
bbox[0] = max(round(bbox[0]), 0)
|
||||||
|
bbox[1] = max(round(bbox[1]), 0)
|
||||||
|
bbox[2] = min(round(bbox[2]), w)
|
||||||
|
bbox[3] = min(round(bbox[3]), h)
|
||||||
|
|
||||||
assert (bbox[2] != 0 and bbox[3] != 0)
|
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
||||||
masks = self.results[0].masks.data
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
||||||
target_height = self.ori_img.shape[0]
|
|
||||||
target_width = self.ori_img.shape[1]
|
|
||||||
h = masks.shape[1]
|
|
||||||
w = masks.shape[2]
|
|
||||||
if h != target_height or w != target_width:
|
|
||||||
bbox = [
|
|
||||||
int(bbox[0] * w / target_width),
|
|
||||||
int(bbox[1] * h / target_height),
|
|
||||||
int(bbox[2] * w / target_width),
|
|
||||||
int(bbox[3] * h / target_height), ]
|
|
||||||
bbox[0] = max(round(bbox[0]), 0)
|
|
||||||
bbox[1] = max(round(bbox[1]), 0)
|
|
||||||
bbox[2] = min(round(bbox[2]), w)
|
|
||||||
bbox[3] = min(round(bbox[3]), h)
|
|
||||||
|
|
||||||
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
|
||||||
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
||||||
|
|
||||||
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
|
union = bbox_area + orig_masks_area - masks_area
|
||||||
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
IoUs = masks_area / union
|
||||||
|
max_iou_index = torch.argmax(IoUs)
|
||||||
|
|
||||||
union = bbox_area + orig_masks_area - masks_area
|
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))
|
||||||
IoUs = masks_area / union
|
return self.results
|
||||||
max_iou_index = torch.argmax(IoUs)
|
|
||||||
|
|
||||||
return np.array([masks[max_iou_index].cpu().numpy()])
|
|
||||||
|
|
||||||
def point_prompt(self, points, pointlabel): # numpy 处理
|
def point_prompt(self, points, pointlabel): # numpy 处理
|
||||||
|
if self.results[0].masks is not None:
|
||||||
masks = self._format_results(self.results[0], 0)
|
if os.path.isdir(self.source):
|
||||||
target_height = self.ori_img.shape[0]
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||||
target_width = self.ori_img.shape[1]
|
masks = self._format_results(self.results[0], 0)
|
||||||
h = masks[0]['segmentation'].shape[0]
|
target_height, target_width = self.results[0].orig_shape
|
||||||
w = masks[0]['segmentation'].shape[1]
|
h = masks[0]['segmentation'].shape[0]
|
||||||
if h != target_height or w != target_width:
|
w = masks[0]['segmentation'].shape[1]
|
||||||
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
|
if h != target_height or w != target_width:
|
||||||
onemask = np.zeros((h, w))
|
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
|
||||||
for i, annotation in enumerate(masks):
|
onemask = np.zeros((h, w))
|
||||||
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation
|
for i, annotation in enumerate(masks):
|
||||||
for i, point in enumerate(points):
|
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation
|
||||||
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
|
for i, point in enumerate(points):
|
||||||
onemask += mask
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
|
||||||
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
|
onemask += mask
|
||||||
onemask -= mask
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
|
||||||
onemask = onemask >= 1
|
onemask -= mask
|
||||||
return np.array([onemask])
|
onemask = onemask >= 1
|
||||||
|
self.results[0].masks.data = torch.tensor(np.array([onemask]))
|
||||||
|
return self.results
|
||||||
|
|
||||||
def text_prompt(self, text):
|
def text_prompt(self, text):
|
||||||
format_results = self._format_results(self.results[0], 0)
|
if self.results[0].masks is not None:
|
||||||
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
|
format_results = self._format_results(self.results[0], 0)
|
||||||
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)
|
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
|
||||||
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
|
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)
|
||||||
max_idx = scores.argsort()
|
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
|
||||||
max_idx = max_idx[-1]
|
max_idx = scores.argsort()
|
||||||
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
max_idx = max_idx[-1]
|
||||||
return np.array([annotations[max_idx]['segmentation']])
|
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
||||||
|
self.results[0].masks.data = torch.tensor(np.array([ann['segmentation'] for ann in annotations]))
|
||||||
|
return self.results
|
||||||
|
|
||||||
def everything_prompt(self):
|
def everything_prompt(self):
|
||||||
return self.results[0].masks.data
|
return self.results
|
||||||
|
Loading…
x
Reference in New Issue
Block a user