mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
ultralytics 8.0.230
TensorRT export hang fix (#7180)
Co-authored-by: 曾逸夫(Zeng Yifu) <41098760+Zengyf-CVer@users.noreply.github.com> Co-authored-by: CV & LLM & AIGC er <wenvoi@163.com> Co-authored-by: Aaron <42322215+aaronllowe@users.noreply.github.com> Co-authored-by: crypthusiast0 <42322215+crypthusiast0@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
bc5b528ca7
commit
8d2a32db77
@ -76,6 +76,12 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: docformatter
|
- id: docformatter
|
||||||
|
|
||||||
|
- repo: https://github.com/hadialqattan/pycln
|
||||||
|
rev: v2.4.0
|
||||||
|
hooks:
|
||||||
|
- id: pycln
|
||||||
|
args: [--all]
|
||||||
|
|
||||||
# - repo: https://github.com/asottile/yesqa
|
# - repo: https://github.com/asottile/yesqa
|
||||||
# rev: v1.4.0
|
# rev: v1.4.0
|
||||||
# hooks:
|
# hooks:
|
||||||
|
@ -183,8 +183,8 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult
|
|||||||
# Heatmap Init
|
# Heatmap Init
|
||||||
heatmap_obj = heatmap.Heatmap()
|
heatmap_obj = heatmap.Heatmap()
|
||||||
heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA ,
|
heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA ,
|
||||||
imw=cap.get(4), # should same as cap height
|
imw=im0.shape[1], # should same as im0 width
|
||||||
imh=cap.get(3), # should same as cap width
|
imh=im0.shape[0], # should same as im0 height
|
||||||
view_img=True,
|
view_img=True,
|
||||||
shape="circle")
|
shape="circle")
|
||||||
|
|
||||||
|
@ -8,9 +8,9 @@ keywords: Ultralytics, YOLOv8, Roboflow, vector analysis, confusion matrix, data
|
|||||||
|
|
||||||
[Roboflow](https://roboflow.com/?ref=ultralytics) has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of [data labeling](https://roboflow.com/annotate?ref=ultralytics), [model training](https://roboflow.com/train?ref=ultralytics), or [model deployment](https://roboflow.com/deploy?ref=ultralytics), Roboflow gives you building blocks to bring custom computer vision solutions to your project.
|
[Roboflow](https://roboflow.com/?ref=ultralytics) has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of [data labeling](https://roboflow.com/annotate?ref=ultralytics), [model training](https://roboflow.com/train?ref=ultralytics), or [model deployment](https://roboflow.com/deploy?ref=ultralytics), Roboflow gives you building blocks to bring custom computer vision solutions to your project.
|
||||||
|
|
||||||
!!! Warning
|
!!! Note
|
||||||
|
|
||||||
Roboflow users can use Ultralytics under the [AGPL license](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) or procure an [Enterprise license](https://ultralytics.com/license) directly from Ultralytics. Be aware that Roboflow does **not** provide Ultralytics licenses, and it is the responsibility of the user to ensure appropriate licensing.
|
Ultralytics offers two licensing options: the [AGPL-3.0 License](https://github.com/ultralytics/ultralytics/blob/main/LICENSE), an OSI-approved open-source license ideal for students and enthusiasts, and the [Enterprise License](https://ultralytics.com/license) for businesses seeking to incorporate our AI models into their products and services. For more details see [Ultralytics Licensing](https://ultralytics.com/license).
|
||||||
|
|
||||||
In this guide, we are going to showcase how to find, label, and organize data for use in training a custom Ultralytics YOLOv8 model. Use the table of contents below to jump directly to a specific section:
|
In this guide, we are going to showcase how to find, label, and organize data for use in training a custom Ultralytics YOLOv8 model. Use the table of contents below to jump directly to a specific section:
|
||||||
|
|
||||||
|
2
setup.py
2
setup.py
@ -75,7 +75,7 @@ setup(
|
|||||||
'mkdocs-material',
|
'mkdocs-material',
|
||||||
'mkdocstrings[python]',
|
'mkdocstrings[python]',
|
||||||
'mkdocs-redirects', # for 301 redirects
|
'mkdocs-redirects', # for 301 redirects
|
||||||
'mkdocs-ultralytics-plugin>=0.0.34', # for meta descriptions and images, dates and authors
|
'mkdocs-ultralytics-plugin>=0.0.35', # for meta descriptions and images, dates and authors
|
||||||
],
|
],
|
||||||
'export': [
|
'export': [
|
||||||
'coremltools>=7.0',
|
'coremltools>=7.0',
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = '8.0.229'
|
__version__ = '8.0.230'
|
||||||
|
|
||||||
from ultralytics.models import RTDETR, SAM, YOLO
|
from ultralytics.models import RTDETR, SAM, YOLO
|
||||||
from ultralytics.models.fastsam import FastSAM
|
from ultralytics.models.fastsam import FastSAM
|
||||||
|
@ -579,6 +579,8 @@ class Exporter:
|
|||||||
def export_engine(self, prefix=colorstr('TensorRT:')):
|
def export_engine(self, prefix=colorstr('TensorRT:')):
|
||||||
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
|
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
|
||||||
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
|
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
|
||||||
|
f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import tensorrt as trt # noqa
|
import tensorrt as trt # noqa
|
||||||
except ImportError:
|
except ImportError:
|
||||||
@ -587,8 +589,8 @@ class Exporter:
|
|||||||
import tensorrt as trt # noqa
|
import tensorrt as trt # noqa
|
||||||
|
|
||||||
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||||||
|
|
||||||
self.args.simplify = True
|
self.args.simplify = True
|
||||||
f_onnx, _ = self.export_onnx()
|
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
||||||
assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}'
|
assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}'
|
||||||
|
Loading…
x
Reference in New Issue
Block a user