mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
Fixed model calling method in app.py
This commit is contained in:
parent
ea93d4f379
commit
93632efa4a
113
app.py
113
app.py
@ -2,13 +2,48 @@ import gradio as gr
|
||||
import cv2
|
||||
import tempfile
|
||||
from ultralytics import YOLOv10
|
||||
import supervision as sv
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
|
||||
def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
||||
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
||||
def download_models(model_id):
|
||||
hf_hub_download("kadirnar/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
||||
return f"./{model_id}"
|
||||
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
category_dict = {
|
||||
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
|
||||
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
|
||||
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
|
||||
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
|
||||
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
|
||||
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
|
||||
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
|
||||
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
|
||||
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
|
||||
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
|
||||
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
|
||||
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
|
||||
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
|
||||
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
|
||||
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
|
||||
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
||||
}
|
||||
|
||||
|
||||
def yolov10_inference(image, video, model_id, image_size, conf_threshold, iou_threshold):
|
||||
model_path = download_models(model_id)
|
||||
model = YOLOv10(model_path)
|
||||
|
||||
if image:
|
||||
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
||||
annotated_image = results[0].plot()
|
||||
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
||||
detections = sv.Detections.from_ultralytics(results)
|
||||
|
||||
labels = [
|
||||
f"{category_dict[class_id]} {confidence:.2f}"
|
||||
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
||||
]
|
||||
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
||||
return annotated_image[:, :, ::-1], None
|
||||
else:
|
||||
video_path = tempfile.mktemp(suffix=".webm")
|
||||
@ -29,8 +64,14 @@ def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
||||
if not ret:
|
||||
break
|
||||
|
||||
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
|
||||
annotated_frame = results[0].plot()
|
||||
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
||||
detections = sv.Detections.from_ultralytics(results)
|
||||
|
||||
labels = [
|
||||
f"{category_dict[class_id]} {confidence:.2f}"
|
||||
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
||||
]
|
||||
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
|
||||
out.write(annotated_frame)
|
||||
|
||||
cap.release()
|
||||
@ -39,8 +80,8 @@ def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
||||
return None, output_video_path
|
||||
|
||||
|
||||
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
|
||||
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
|
||||
def yolov10_inference_for_examples(image, model_id, image_size, conf_threshold, iou_threshold):
|
||||
annotated_image, _ = yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
|
||||
return annotated_image
|
||||
|
||||
|
||||
@ -58,14 +99,14 @@ def app():
|
||||
model_id = gr.Dropdown(
|
||||
label="Model",
|
||||
choices=[
|
||||
"yolov10n",
|
||||
"yolov10s",
|
||||
"yolov10m",
|
||||
"yolov10b",
|
||||
"yolov10l",
|
||||
"yolov10x",
|
||||
"yolov10n.pt",
|
||||
"yolov10s.pt",
|
||||
"yolov10m.pt",
|
||||
"yolov10b.pt",
|
||||
"yolov10l.pt",
|
||||
"yolov10x.pt",
|
||||
],
|
||||
value="yolov10m",
|
||||
value="yolov10m.pt",
|
||||
)
|
||||
image_size = gr.Slider(
|
||||
label="Image Size",
|
||||
@ -76,11 +117,18 @@ def app():
|
||||
)
|
||||
conf_threshold = gr.Slider(
|
||||
label="Confidence Threshold",
|
||||
minimum=0.0,
|
||||
minimum=0.1,
|
||||
maximum=1.0,
|
||||
step=0.05,
|
||||
step=0.1,
|
||||
value=0.25,
|
||||
)
|
||||
iou_threshold = gr.Slider(
|
||||
label="IoU Threshold",
|
||||
minimum=0.1,
|
||||
maximum=1.0,
|
||||
step=0.1,
|
||||
value=0.45,
|
||||
)
|
||||
yolov10_infer = gr.Button(value="Detect Objects")
|
||||
|
||||
with gr.Column():
|
||||
@ -88,12 +136,13 @@ def app():
|
||||
output_video = gr.Video(label="Annotated Video", visible=False)
|
||||
|
||||
def update_visibility(input_type):
|
||||
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
||||
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
||||
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
||||
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
||||
|
||||
return image, video, output_image, output_video
|
||||
image_visibility = input_type == "Image"
|
||||
return (
|
||||
gr.update(visible=image_visibility),
|
||||
gr.update(visible=not image_visibility),
|
||||
gr.update(visible=image_visibility),
|
||||
gr.update(visible=not image_visibility),
|
||||
)
|
||||
|
||||
input_type.change(
|
||||
fn=update_visibility,
|
||||
@ -101,16 +150,15 @@ def app():
|
||||
outputs=[image, video, output_image, output_video],
|
||||
)
|
||||
|
||||
def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
|
||||
def run_inference(image, video, model_id, image_size, conf_threshold, iou_threshold, input_type):
|
||||
if input_type == "Image":
|
||||
return yolov10_inference(image, None, model_id, image_size, conf_threshold)
|
||||
return yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
|
||||
else:
|
||||
return yolov10_inference(None, video, model_id, image_size, conf_threshold)
|
||||
|
||||
return yolov10_inference(None, video, model_id, image_size, conf_threshold, iou_threshold)
|
||||
|
||||
yolov10_infer.click(
|
||||
fn=run_inference,
|
||||
inputs=[image, video, model_id, image_size, conf_threshold, input_type],
|
||||
inputs=[image, video, model_id, image_size, conf_threshold, iou_threshold, input_type],
|
||||
outputs=[output_image, output_video],
|
||||
)
|
||||
|
||||
@ -118,15 +166,17 @@ def app():
|
||||
examples=[
|
||||
[
|
||||
"ultralytics/assets/bus.jpg",
|
||||
"yolov10s",
|
||||
"yolov10s.pt",
|
||||
640,
|
||||
0.25,
|
||||
0.45,
|
||||
],
|
||||
[
|
||||
"ultralytics/assets/zidane.jpg",
|
||||
"yolov10s",
|
||||
"yolov10s.pt",
|
||||
640,
|
||||
0.25,
|
||||
0.45,
|
||||
],
|
||||
],
|
||||
fn=yolov10_inference_for_examples,
|
||||
@ -135,11 +185,13 @@ def app():
|
||||
model_id,
|
||||
image_size,
|
||||
conf_threshold,
|
||||
iou_threshold,
|
||||
],
|
||||
outputs=[output_image],
|
||||
cache_examples='lazy',
|
||||
)
|
||||
|
||||
|
||||
gradio_app = gr.Blocks()
|
||||
with gradio_app:
|
||||
gr.HTML(
|
||||
@ -157,5 +209,6 @@ with gradio_app:
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
app()
|
||||
|
||||
if __name__ == '__main__':
|
||||
gradio_app.launch()
|
||||
|
Loading…
x
Reference in New Issue
Block a user