mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Add YouTube iframe loading="lazy"
(#8001)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
70d4a3752e
commit
9d35ecbf0f
@ -13,7 +13,7 @@ The Explorer API is a Python API for exploring your datasets. It supports filter
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo?start=279"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo?start=279"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ Explorer GUI is like a playground build using [Ultralytics Explorer API](api.md)
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo?start=306"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo?start=306"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -15,7 +15,7 @@ Ultralytics Explorer is a tool for exploring CV datasets using semantic search,
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/3VryynorQeo"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -16,7 +16,7 @@ This dataset is intended for use with [Ultralytics HUB](https://hub.ultralytics.
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Gc6K5eKrTNQ"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Gc6K5eKrTNQ"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/4ezde5-nZZw"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/4ezde5-nZZw"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ Whether you're a beginner or an expert in deep learning, our tutorials offer val
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/96NkhsV-W1U"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/96NkhsV-W1U"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ This comprehensive guide aims to expedite your journey with YOLO object detectio
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/yul4gq_LrOI"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/yul4gq_LrOI"
|
||||||
title="Introducing Raspberry Pi 5" frameborder="0"
|
title="Introducing Raspberry Pi 5" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Trackin
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/okItf1iHlV8"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/okItf1iHlV8"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -16,7 +16,7 @@ The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanc
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ The [Triton Inference Server](https://developer.nvidia.com/nvidia-triton-inferen
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/NQDtfSi5QF4"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/NQDtfSi5QF4"
|
||||||
title="Getting Started with NVIDIA Triton Inference Server" frameborder="0"
|
title="Getting Started with NVIDIA Triton Inference Server" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -39,7 +39,7 @@ HUB is designed to be user-friendly and intuitive, with a drag-and-drop interfac
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ Welcome to the Integrations guide for [Ultralytics HUB](https://hub.ultralytics.
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ This creates a unified and organized workspace that facilitates easier model man
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Gc6K5eKrTNQ"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Gc6K5eKrTNQ"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -12,7 +12,7 @@ Thank you for visiting the Quickstart guide for [Ultralytics HUB](https://hub.ul
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/lveF9iCMIzc?si=_Q4WB5kMB5qNe7q6"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -49,7 +49,7 @@ Explore the YOLOv8 Docs, a comprehensive resource designed to help you understan
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/LNwODJXcvt4?si=7n1UvGRLSd9p5wKs"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/LNwODJXcvt4?si=7n1UvGRLSd9p5wKs"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -147,7 +147,7 @@ For a visual walkthrough of what the ClearML Results Page looks like, watch the
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/iLcC7m3bCes?si=oSEAoZbrg8inCg_2"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/iLcC7m3bCes?si=oSEAoZbrg8inCg_2"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ OpenVINO, short for Open Visual Inference & Neural Network Optimization toolkit,
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/kONm9nE5_Fk?si=kzquuBrxjSbntHoU"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/kONm9nE5_Fk?si=kzquuBrxjSbntHoU"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -26,7 +26,7 @@ Here are some of the key models supported:
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/MWq1UxqTClU?si=nHAW-lYDzrz68jR0"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/MWq1UxqTClU?si=nHAW-lYDzrz68jR0"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Na0HvJ4hkk0"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Na0HvJ4hkk0"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ Once your model is trained and validated, the next logical step is to evaluate i
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?start=105"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?start=105"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ The ultimate goal of training a model is to deploy it for real-world application
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/WbomGeoOT_k?si=aGmuyooWftA0ue9X"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/WbomGeoOT_k?si=aGmuyooWftA0ue9X"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ Ultralytics YOLOv8 is not just another object detection model; it's a versatile
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?si=dhnGKgqvs7nPgeaM"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?si=dhnGKgqvs7nPgeaM"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ In the world of machine learning and computer vision, the process of making sens
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -21,7 +21,7 @@ The output from Ultralytics trackers is consistent with standard object detectio
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ Training a deep learning model involves feeding it data and adjusting its parame
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/LNwODJXcvt4?si=7n1UvGRLSd9p5wKs"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/LNwODJXcvt4?si=7n1UvGRLSd9p5wKs"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ Validation is a critical step in the machine learning pipeline, allowing you to
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?start=47"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?start=47"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ Ultralytics provides various installation methods including pip, conda, and Dock
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/_a7cVL9hqnk"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_a7cVL9hqnk"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ The output of an image classifier is a single class label and a confidence score
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/NAs-cfq9BDw?start=169"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/NAs-cfq9BDw?start=169"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ The output of an object detector is a set of bounding boxes that enclose the obj
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/5ku7npMrW40?si=6HQO1dDXunV8gekh"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/5ku7npMrW40?si=6HQO1dDXunV8gekh"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -13,7 +13,7 @@ YOLOv8 is an AI framework that supports multiple computer vision **tasks**. The
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/NAs-cfq9BDw"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/NAs-cfq9BDw"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -20,7 +20,7 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ The output of a pose estimation model is a set of points that represent the keyp
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/Y28xXQmju64?si=pCY4ZwejZFu6Z4kZ"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Y28xXQmju64?si=pCY4ZwejZFu6Z4kZ"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -14,7 +14,7 @@ The output of an instance segmentation model is a set of masks or contours that
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/o4Zd-IeMlSY?si=37nusCzDTd74Obsp"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/o4Zd-IeMlSY?si=37nusCzDTd74Obsp"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ Ultralytics framework supports callbacks as entry points in strategic stages of
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=67"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=67"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -8,7 +8,7 @@ YOLO settings and hyperparameters play a critical role in the model's performanc
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=87"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=87"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ The YOLO command line interface (CLI) allows for simple single-line commands wit
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -8,7 +8,7 @@ Both the Ultralytics YOLO command-line and Python interfaces are simply a high-l
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=104"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=104"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
@ -10,7 +10,7 @@ Welcome to the YOLOv8 Python Usage documentation! This guide is designed to help
|
|||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<br>
|
<br>
|
||||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=58"
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=58"
|
||||||
title="YouTube video player" frameborder="0"
|
title="YouTube video player" frameborder="0"
|
||||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||||
allowfullscreen>
|
allowfullscreen>
|
||||||
|
Loading…
x
Reference in New Issue
Block a user