mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
logger updates (#97)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
48cffa176e
commit
a1808eeda4
@ -99,7 +99,8 @@ default_callbacks = {
|
||||
def add_integration_callbacks(trainer):
|
||||
from .clearml import callbacks as clearml_callbacks
|
||||
from .tb import callbacks as tb_callbacks
|
||||
from .wb import callbacks as wb_callbacks
|
||||
|
||||
for x in tb_callbacks, clearml_callbacks:
|
||||
for x in clearml_callbacks, tb_callbacks, wb_callbacks:
|
||||
for k, v in x.items():
|
||||
trainer.add_callback(k, v) # add_callback(name, func)
|
||||
|
@ -16,7 +16,7 @@ def _log_images(imgs_dict, group="", step=0):
|
||||
task.get_logger().report_image(group, k, step, v)
|
||||
|
||||
|
||||
def on_train_start(trainer):
|
||||
def on_pretrain_routine_start(trainer):
|
||||
# TODO: reuse existing task
|
||||
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
|
||||
task_name=trainer.args.name,
|
||||
@ -48,7 +48,7 @@ def on_train_end(trainer):
|
||||
|
||||
|
||||
callbacks = {
|
||||
"on_train_start": on_train_start,
|
||||
"on_pretrain_routine_start": on_pretrain_routine_start,
|
||||
"on_train_epoch_end": on_train_epoch_end,
|
||||
"on_val_end": on_val_end,
|
||||
"on_train_end": on_train_end} if clearml else {}
|
||||
|
@ -8,7 +8,7 @@ def _log_scalars(scalars, step=0):
|
||||
writer.add_scalar(k, v, step)
|
||||
|
||||
|
||||
def on_train_start(trainer):
|
||||
def on_pretrain_routine_start(trainer):
|
||||
global writer
|
||||
writer = SummaryWriter(str(trainer.save_dir))
|
||||
|
||||
@ -21,4 +21,7 @@ def on_val_end(trainer):
|
||||
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
||||
|
||||
|
||||
callbacks = {"on_train_start": on_train_start, "on_val_end": on_val_end, "on_batch_end": on_batch_end}
|
||||
callbacks = {
|
||||
"on_pretrain_routine_start": on_pretrain_routine_start,
|
||||
"on_val_end": on_val_end,
|
||||
"on_batch_end": on_batch_end}
|
||||
|
46
ultralytics/yolo/utils/callbacks/wb.py
Normal file
46
ultralytics/yolo/utils/callbacks/wb.py
Normal file
@ -0,0 +1,46 @@
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, '__version__')
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
wandb.init(project=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
|
||||
name=trainer.args.name,
|
||||
config=dict(trainer.args)) if not wandb.run else wandb.run
|
||||
|
||||
|
||||
def on_val_end(trainer):
|
||||
wandb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
"model/parameters": get_num_params(trainer.model),
|
||||
"model/GFLOPs": round(get_flops(trainer.model), 1),
|
||||
"model/speed(ms)": round(trainer.validator.speed[1], 1)}
|
||||
wandb.run.log(model_info, step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
wandb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
|
||||
if trainer.epoch == 1:
|
||||
wandb.run.log({f.stem: wandb.Image(str(f))
|
||||
for f in trainer.save_dir.glob('train_batch*.jpg')},
|
||||
step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
art = wandb.Artifact(type="model", name=f"run_{wandb.run.id}_model")
|
||||
if trainer.best.exists():
|
||||
art.add_file(trainer.best)
|
||||
wandb.run.log_artifact(art)
|
||||
|
||||
|
||||
callbacks = {
|
||||
"on_pretrain_routine_start": on_pretrain_routine_start,
|
||||
"on_train_epoch_end": on_train_epoch_end,
|
||||
"on_val_end": on_val_end,
|
||||
"on_train_end": on_train_end} if wandb else {}
|
@ -55,7 +55,7 @@ def DDP_model(model):
|
||||
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||||
|
||||
|
||||
def select_device(device='', batch_size=0, newline=True):
|
||||
def select_device(device='', batch_size=0, newline=False):
|
||||
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
||||
ver = git_describe() or ultralytics.__version__ # git commit or pip package version
|
||||
s = f'Ultralytics YOLO 🚀 {ver} Python-{platform.python_version()} torch-{torch.__version__} '
|
||||
@ -86,9 +86,7 @@ def select_device(device='', batch_size=0, newline=True):
|
||||
s += 'CPU\n'
|
||||
arg = 'cpu'
|
||||
|
||||
if not newline:
|
||||
s = s.rstrip()
|
||||
LOGGER.info(s)
|
||||
LOGGER.info(s if newline else s.rstrip())
|
||||
return torch.device(arg)
|
||||
|
||||
|
||||
@ -150,6 +148,7 @@ def get_num_gradients(model):
|
||||
|
||||
def get_flops(model, imgsz=640):
|
||||
try:
|
||||
model = de_parallel(model)
|
||||
p = next(model.parameters())
|
||||
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
|
||||
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
||||
|
Loading…
x
Reference in New Issue
Block a user