mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.0.46
TFLite and Benchmarks updates (#1141)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
3765f4f6d9
commit
a82ee2c779
20
.github/workflows/ci.yaml
vendored
20
.github/workflows/ci.yaml
vendored
@ -55,18 +55,20 @@ jobs:
|
||||
- name: Benchmark DetectionModel
|
||||
shell: python
|
||||
run: |
|
||||
from ultralytics.yolo.utils.benchmarks import run_benchmarks
|
||||
run_benchmarks(model='${{ matrix.model }}.pt', imgsz=160, half=False, hard_fail=False)
|
||||
from ultralytics.yolo.utils.benchmarks import benchmark
|
||||
benchmark(model='${{ matrix.model }}.pt', imgsz=160, half=False, hard_fail=0.20)
|
||||
- name: Benchmark SegmentationModel
|
||||
shell: python
|
||||
run: |
|
||||
from ultralytics.yolo.utils.benchmarks import run_benchmarks
|
||||
run_benchmarks(model='${{ matrix.model }}-seg.pt', imgsz=160, half=False, hard_fail=False)
|
||||
from ultralytics.yolo.utils.benchmarks import benchmark
|
||||
benchmark(model='${{ matrix.model }}-seg.pt', imgsz=160, half=False, hard_fail=0.14)
|
||||
- name: Benchmark ClassificationModel
|
||||
shell: python
|
||||
run: |
|
||||
from ultralytics.yolo.utils.benchmarks import run_benchmarks
|
||||
run_benchmarks(model='${{ matrix.model }}-cls.pt', imgsz=160, half=False, hard_fail=False)
|
||||
from ultralytics.yolo.utils.benchmarks import benchmark
|
||||
benchmark(model='${{ matrix.model }}-cls.pt', imgsz=160, half=False, hard_fail=0.70)
|
||||
- name: Benchmark Summary
|
||||
run: cat benchmarks.log
|
||||
|
||||
Tests:
|
||||
timeout-minutes: 60
|
||||
@ -88,10 +90,10 @@ jobs:
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Get cache dir
|
||||
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
||||
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
||||
id: pip-cache
|
||||
run: echo "::set-output name=dir::$(pip cache dir)"
|
||||
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
|
||||
shell: bash # for Windows compatibility
|
||||
- name: Cache pip
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = '8.0.45'
|
||||
__version__ = '8.0.46'
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||
|
@ -254,8 +254,8 @@ def entrypoint(debug=''):
|
||||
else:
|
||||
check_cfg_mismatch(full_args_dict, {a: ''})
|
||||
|
||||
# Defaults
|
||||
task2data = dict(detect='coco128.yaml', segment='coco128-seg.yaml', classify='imagenet100')
|
||||
# Check keys
|
||||
check_cfg_mismatch(full_args_dict, overrides)
|
||||
|
||||
# Mode
|
||||
mode = overrides.get('mode', None)
|
||||
@ -279,11 +279,12 @@ def entrypoint(debug=''):
|
||||
model = YOLO(model)
|
||||
|
||||
# Task
|
||||
task = overrides.get('task', None)
|
||||
if task is not None and task not in TASKS:
|
||||
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
|
||||
else:
|
||||
model.task = task
|
||||
task = overrides.get('task', model.task)
|
||||
if task is not None:
|
||||
if task not in TASKS:
|
||||
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
|
||||
else:
|
||||
model.task = task
|
||||
|
||||
# Mode
|
||||
if mode in {'predict', 'track'} and 'source' not in overrides:
|
||||
@ -292,8 +293,9 @@ def entrypoint(debug=''):
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.")
|
||||
elif mode in ('train', 'val'):
|
||||
if 'data' not in overrides:
|
||||
overrides['data'] = task2data.get(overrides['task'], DEFAULT_CFG.data)
|
||||
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using {model.task} default 'data={overrides['data']}'.")
|
||||
task2data = dict(detect='coco128.yaml', segment='coco128-seg.yaml', classify='imagenet100')
|
||||
overrides['data'] = task2data.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
|
||||
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using default 'data={overrides['data']}'.")
|
||||
elif mode == 'export':
|
||||
if 'format' not in overrides:
|
||||
overrides['format'] = DEFAULT_CFG.format or 'torchscript'
|
||||
|
@ -16,10 +16,28 @@ from .utils import HELP_URL, LOCAL_RANK, get_hash, img2label_paths, verify_image
|
||||
class YOLODataset(BaseDataset):
|
||||
cache_version = '1.0.1' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
|
||||
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
||||
"""YOLO Dataset.
|
||||
"""
|
||||
Dataset class for loading images object detection and/or segmentation labels in YOLO format.
|
||||
|
||||
Args:
|
||||
img_path (str): image path.
|
||||
prefix (str): prefix.
|
||||
img_path (str): path to the folder containing images.
|
||||
imgsz (int): image size (default: 640).
|
||||
cache (bool): if True, a cache file of the labels is created to speed up future creation of dataset instances
|
||||
(default: False).
|
||||
augment (bool): if True, data augmentation is applied (default: True).
|
||||
hyp (dict): hyperparameters to apply data augmentation (default: None).
|
||||
prefix (str): prefix to print in log messages (default: '').
|
||||
rect (bool): if True, rectangular training is used (default: False).
|
||||
batch_size (int): size of batches (default: None).
|
||||
stride (int): stride (default: 32).
|
||||
pad (float): padding (default: 0.0).
|
||||
single_cls (bool): if True, single class training is used (default: False).
|
||||
use_segments (bool): if True, segmentation masks are used as labels (default: False).
|
||||
use_keypoints (bool): if True, keypoints are used as labels (default: False).
|
||||
names (list): class names (default: None).
|
||||
|
||||
Returns:
|
||||
A PyTorch dataset object that can be used for training an object detection or segmentation model.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -44,7 +62,12 @@ class YOLODataset(BaseDataset):
|
||||
super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls)
|
||||
|
||||
def cache_labels(self, path=Path('./labels.cache')):
|
||||
# Cache dataset labels, check images and read shapes
|
||||
"""Cache dataset labels, check images and read shapes.
|
||||
Args:
|
||||
path (Path): path where to save the cache file (default: Path('./labels.cache')).
|
||||
Returns:
|
||||
(dict): labels.
|
||||
"""
|
||||
x = {'labels': []}
|
||||
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
||||
desc = f'{self.prefix}Scanning {path.parent / path.stem}...'
|
||||
@ -119,9 +142,8 @@ class YOLODataset(BaseDataset):
|
||||
self.im_files = [lb['im_file'] for lb in labels] # update im_files
|
||||
|
||||
# Check if the dataset is all boxes or all segments
|
||||
len_cls = sum(len(lb['cls']) for lb in labels)
|
||||
len_boxes = sum(len(lb['bboxes']) for lb in labels)
|
||||
len_segments = sum(len(lb['segments']) for lb in labels)
|
||||
lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in labels)
|
||||
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
|
||||
if len_segments and len_boxes != len_segments:
|
||||
LOGGER.warning(
|
||||
f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, '
|
||||
|
@ -294,7 +294,7 @@ class Exporter:
|
||||
# YOLOv8 ONNX export
|
||||
requirements = ['onnx>=1.12.0']
|
||||
if self.args.simplify:
|
||||
requirements += ['onnxsim', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime']
|
||||
requirements += ['onnxsim>=0.4.17', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime']
|
||||
check_requirements(requirements)
|
||||
import onnx # noqa
|
||||
|
||||
@ -513,8 +513,8 @@ class Exporter:
|
||||
cuda = torch.cuda.is_available()
|
||||
check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}")
|
||||
import tensorflow as tf # noqa
|
||||
check_requirements(('onnx', 'onnx2tf', 'sng4onnx', 'onnxsim', 'onnx_graphsurgeon', 'tflite_support',
|
||||
'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'),
|
||||
check_requirements(('onnx', 'onnx2tf>=1.7.7', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.17', 'onnx_graphsurgeon>=0.3.26',
|
||||
'tflite_support', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'),
|
||||
cmds='--extra-index-url https://pypi.ngc.nvidia.com')
|
||||
|
||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
@ -529,7 +529,7 @@ class Exporter:
|
||||
|
||||
# Export to TF
|
||||
int8 = '-oiqt -qt per-tensor' if self.args.int8 else ''
|
||||
cmd = f'onnx2tf -i {f_onnx} -o {f} --non_verbose {int8}'
|
||||
cmd = f'onnx2tf -i {f_onnx} -o {f} -nuo --non_verbose {int8}'
|
||||
LOGGER.info(f'\n{prefix} running {cmd}')
|
||||
subprocess.run(cmd, shell=True)
|
||||
yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml
|
||||
|
@ -9,8 +9,9 @@ from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, Segmentat
|
||||
guess_model_task, nn)
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, callbacks, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_yaml
|
||||
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks,
|
||||
is_git_dir, is_pip_package, yaml_load)
|
||||
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update, check_yaml
|
||||
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
|
||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
||||
|
||||
@ -150,6 +151,13 @@ class YOLO:
|
||||
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
||||
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
||||
|
||||
def _check_pip_update(self):
|
||||
"""
|
||||
Inform user of ultralytics package update availability
|
||||
"""
|
||||
if is_pip_package():
|
||||
check_pip_update()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the model modules.
|
||||
@ -189,6 +197,10 @@ class YOLO:
|
||||
Returns:
|
||||
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
|
||||
overrides = self.overrides.copy()
|
||||
overrides['conf'] = 0.25
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
@ -251,11 +263,12 @@ class YOLO:
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
from ultralytics.yolo.utils.benchmarks import run_benchmarks
|
||||
self._check_is_pytorch_model()
|
||||
from ultralytics.yolo.utils.benchmarks import benchmark
|
||||
overrides = self.model.args.copy()
|
||||
overrides.update(kwargs)
|
||||
overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults
|
||||
return run_benchmarks(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])
|
||||
return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])
|
||||
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
@ -283,6 +296,7 @@ class YOLO:
|
||||
**kwargs (Any): Any number of arguments representing the training configuration.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
self._check_pip_update()
|
||||
overrides = self.overrides.copy()
|
||||
overrides.update(kwargs)
|
||||
if kwargs.get('cfg'):
|
||||
|
@ -178,7 +178,12 @@ class BasePredictor:
|
||||
self.run_callbacks('on_predict_postprocess_end')
|
||||
|
||||
# visualize, save, write results
|
||||
for i in range(len(im)):
|
||||
n = len(im)
|
||||
for i in range(n):
|
||||
self.results[i].speed = {
|
||||
'preprocess': self.dt[0].dt * 1E3 / n,
|
||||
'inference': self.dt[1].dt * 1E3 / n,
|
||||
'postprocess': self.dt[2].dt * 1E3 / n}
|
||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
|
||||
else (path, im0s.copy())
|
||||
p = Path(p)
|
||||
|
@ -354,22 +354,6 @@ def get_git_branch():
|
||||
return None # if not git dir or on error
|
||||
|
||||
|
||||
def get_latest_pypi_version(package_name='ultralytics'):
|
||||
"""
|
||||
Returns the latest version of a PyPI package without downloading or installing it.
|
||||
|
||||
Parameters:
|
||||
package_name (str): The name of the package to find the latest version for.
|
||||
|
||||
Returns:
|
||||
str: The latest version of the package.
|
||||
"""
|
||||
response = requests.get(f'https://pypi.org/pypi/{package_name}/json')
|
||||
if response.status_code == 200:
|
||||
return response.json()['info']['version']
|
||||
return None
|
||||
|
||||
|
||||
def get_default_args(func):
|
||||
"""Returns a dictionary of default arguments for a function.
|
||||
|
||||
@ -611,7 +595,7 @@ def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||
# Run below code on yolo/utils init ------------------------------------------------------------------------------------
|
||||
|
||||
# Set logger
|
||||
set_logging(LOGGING_NAME) # run before defining LOGGER
|
||||
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER
|
||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
||||
if WINDOWS:
|
||||
for fn in LOGGER.info, LOGGER.warning:
|
||||
|
@ -37,11 +37,7 @@ from ultralytics.yolo.utils.files import file_size
|
||||
from ultralytics.yolo.utils.torch_utils import select_device
|
||||
|
||||
|
||||
def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
imgsz=640,
|
||||
half=False,
|
||||
device='cpu',
|
||||
hard_fail=False):
|
||||
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, device='cpu', hard_fail=0.30):
|
||||
device = select_device(device, verbose=False)
|
||||
if isinstance(model, (str, Path)):
|
||||
model = YOLO(model)
|
||||
@ -52,6 +48,7 @@ def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
try:
|
||||
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
||||
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
||||
assert i != 11 or model.task != 'classify', 'paddle-classify bug'
|
||||
|
||||
if 'cpu' in device.type:
|
||||
assert cpu, 'inference not supported on CPU'
|
||||
@ -85,26 +82,28 @@ def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
|
||||
except Exception as e:
|
||||
if hard_fail:
|
||||
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
||||
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
|
||||
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
|
||||
y.append([name, '❌', None, None, None]) # mAP, t_inference
|
||||
|
||||
# Print results
|
||||
LOGGER.info('\n')
|
||||
check_yolo(device=device) # print system info
|
||||
c = ['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)'] if map else ['Format', 'Export', '', '']
|
||||
c = ['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']
|
||||
df = pd.DataFrame(y, columns=c)
|
||||
LOGGER.info(f'\nBenchmarks complete for {Path(model.ckpt_path).name} on {data} at imgsz={imgsz} '
|
||||
f'({time.time() - t0:.2f}s)')
|
||||
LOGGER.info(str(df if map else df.iloc[:, :2]))
|
||||
|
||||
if hard_fail and isinstance(hard_fail, str):
|
||||
name = Path(model.ckpt_path).name
|
||||
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
|
||||
LOGGER.info(s)
|
||||
with open('benchmarks.log', 'a') as f:
|
||||
f.write(s)
|
||||
|
||||
if hard_fail and isinstance(hard_fail, float):
|
||||
metrics = df[key].array # values to compare to floor
|
||||
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: metric < floor {floor}'
|
||||
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
|
||||
|
||||
return df
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_benchmarks()
|
||||
benchmark()
|
||||
|
@ -16,6 +16,7 @@ import cv2
|
||||
import numpy as np
|
||||
import pkg_resources as pkg
|
||||
import psutil
|
||||
import requests
|
||||
import torch
|
||||
from matplotlib import font_manager
|
||||
|
||||
@ -117,6 +118,31 @@ def check_version(current: str = '0.0.0',
|
||||
return result
|
||||
|
||||
|
||||
def check_latest_pypi_version(package_name='ultralytics'):
|
||||
"""
|
||||
Returns the latest version of a PyPI package without downloading or installing it.
|
||||
|
||||
Parameters:
|
||||
package_name (str): The name of the package to find the latest version for.
|
||||
|
||||
Returns:
|
||||
str: The latest version of the package.
|
||||
"""
|
||||
response = requests.get(f'https://pypi.org/pypi/{package_name}/json')
|
||||
if response.status_code == 200:
|
||||
return response.json()['info']['version']
|
||||
return None
|
||||
|
||||
|
||||
def check_pip_update():
|
||||
from ultralytics import __version__
|
||||
latest = check_latest_pypi_version()
|
||||
latest = '9.0.0'
|
||||
if pkg.parse_version(__version__) < pkg.parse_version(latest):
|
||||
LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
|
||||
f"Update with 'pip install -U ultralytics'")
|
||||
|
||||
|
||||
def check_font(font='Arial.ttf'):
|
||||
"""
|
||||
Find font locally or download to user's configuration directory if it does not already exist.
|
||||
|
@ -1,10 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import socket
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
from . import USER_CONFIG_DIR
|
||||
from .torch_utils import TORCH_1_9
|
||||
@ -22,12 +24,12 @@ def find_free_network_port() -> int:
|
||||
|
||||
|
||||
def generate_ddp_file(trainer):
|
||||
import_path = '.'.join(str(trainer.__class__).split('.')[1:-1])
|
||||
module, name = f'{trainer.__class__.__module__}.{trainer.__class__.__name__}'.rsplit('.', 1)
|
||||
|
||||
content = f'''cfg = {vars(trainer.args)} \nif __name__ == "__main__":
|
||||
from ultralytics.{import_path} import {trainer.__class__.__name__}
|
||||
from {module} import {name}
|
||||
|
||||
trainer = {trainer.__class__.__name__}(cfg=cfg)
|
||||
trainer = {name}(cfg=cfg)
|
||||
trainer.train()'''
|
||||
(USER_CONFIG_DIR / 'DDP').mkdir(exist_ok=True)
|
||||
with tempfile.NamedTemporaryFile(prefix='_temp_',
|
||||
@ -41,12 +43,12 @@ def generate_ddp_file(trainer):
|
||||
|
||||
|
||||
def generate_ddp_command(world_size, trainer):
|
||||
import __main__ # local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
|
||||
file = os.path.abspath(sys.argv[0])
|
||||
using_cli = not file.endswith('.py')
|
||||
import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
|
||||
if not trainer.resume:
|
||||
shutil.rmtree(trainer.save_dir) # remove the save_dir
|
||||
if using_cli:
|
||||
file = str(Path(sys.argv[0]).resolve())
|
||||
safe_pattern = re.compile(r'^[a-zA-Z0-9_. /\\-]{1,128}$') # allowed characters and maximum of 100 characters
|
||||
if not (safe_pattern.match(file) and Path(file).exists() and file.endswith('.py')): # using CLI
|
||||
file = generate_ddp_file(trainer)
|
||||
dist_cmd = 'torch.distributed.run' if TORCH_1_9 else 'torch.distributed.launch'
|
||||
port = find_free_network_port()
|
||||
|
Loading…
x
Reference in New Issue
Block a user