added attribution visualization with run_attribution.py

This commit is contained in:
nielseni6 2024-10-15 11:51:37 -04:00
parent cd2f79c702
commit b02bf58de6
12 changed files with 1266 additions and 12 deletions

1
.gitignore vendored
View File

@ -51,6 +51,7 @@ coverage.xml
.hypothesis/ .hypothesis/
.pytest_cache/ .pytest_cache/
mlruns/ mlruns/
figures/
# Translations # Translations
*.mo *.mo

34
run_attribution.py Normal file
View File

@ -0,0 +1,34 @@
from ultralytics import YOLOv10, YOLO
# from ultralytics.engine.pgt_trainer import PGTTrainer
# from ultralytics import BaseTrainer
# from ultralytics.engine.trainer import BaseTrainer
import os
# Set CUDA device (only needed for multi-gpu machines)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
# model = YOLOv10()
# model = YOLO()
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10n.pt')
model.train(data='coco.yaml',
trainer=model._smart_load("pgt_trainer"), # This is needed to generate attributions (will be used later to train via PGT)
# Add return_images as input parameter
epochs=500, batch=16, imgsz=640,
debug=True, # If debug = True, the attributions will be saved in the figures folder
)
# Save the trained model
model.save('yolov10_coco_trained.pt')
# Evaluate the model on the validation set
results = model.val(data='coco.yaml')
# Print the evaluation results
print(results)

83
run_train.py Normal file
View File

@ -0,0 +1,83 @@
from ultralytics import YOLOv10, YOLO
# from ultralytics.engine.pgt_trainer import PGTTrainer
# from ultralytics import BaseTrainer
# from ultralytics.engine.trainer import BaseTrainer
import os
# Set CUDA device (only needed for multi-gpu machines)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
model = YOLOv10()
# model = YOLO()
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# model = YOLOv10('yolov10m.pt')
model.train(data='coco.yaml',
# Add return_images as input parameter
epochs=500, batch=16, imgsz=640,
)
# Save the trained model
model.save('yolov10_coco_trained.pt')
# Evaluate the model on the validation set
results = model.val(data='coco.yaml')
# Print the evaluation results
print(results)
# import torch
# from torch.utils.data import DataLoader
# from torchvision import datasets, transforms
# # Define the transformation for the dataset
# transform = transforms.Compose([
# transforms.Resize((640, 640)),
# transforms.ToTensor()
# ])
# # Load the COCO dataset
# train_dataset = datasets.CocoDetection(root='data/nielseni6/coco/train2017', annFile='/data/nielseni6/coco/annotations/instances_train2017.json', transform=transform)
# val_dataset = datasets.CocoDetection(root='data/nielseni6/coco/val2017', annFile='/data/nielseni6/coco/annotations/instances_val2017.json', transform=transform)
# # Create data loaders
# train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True, num_workers=4)
# val_loader = DataLoader(val_dataset, batch_size=256, shuffle=False, num_workers=4)
# model = YOLOv10()
# # Define the optimizer
# optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# # Training loop
# for epoch in range(500):
# model.train()
# for images, targets in train_loader:
# images = images.to('cuda')
# targets = [{k: v.to('cuda') for k, v in t.items()} for t in targets]
# loss = model(images, targets)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# # Validation loop
# model.eval()
# with torch.no_grad():
# for images, targets in val_loader:
# images = images.to('cuda')
# targets = [{k: v.to('cuda') for k, v in t.items()} for t in targets]
# results = model(images, targets)
# # Save the trained model
# model.save('yolov10_coco_trained.pt')
# # Evaluate the model on the validation set
# results = model.val(data='coco.yaml')
# # Print the evaluation results
# print(results)

96
run_val.py Normal file
View File

@ -0,0 +1,96 @@
from ultralytics import YOLOv10
import torch
from PIL import Image
from torchvision import transforms
# Define the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# model = YOLOv10.from_pretrained('jameslahm/yolov10n')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
# model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model = YOLOv10('yolov10n.pt').to(device)
# Load the image
# path = '/home/nielseni6/PythonScripts/Github/yolov10/images/fat-dog.jpg'
path = '/home/nielseni6/PythonScripts/Github/yolov10/images/The-Cardinal-Bird.jpg'
image = Image.open(path)
# Define the transformation to resize the image, convert it to a tensor, and normalize it
transform = transforms.Compose([
transforms.Resize((640, 640)),
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Apply the transformation
image_tensor = transform(image)
# Add a batch dimension
image_tensor = image_tensor.unsqueeze(0).to(device)
image_tensor = image_tensor.requires_grad_(True)
# Predict for a specific image
# results = model.predict(image_tensor, save=True)
# model.requires_grad_(True)
# for p in model.parameters():
# p.requires_grad = True
results = model.predict(image_tensor, save=True)
# Display the results
for result in results:
print(result)
# pred = results[0].boxes[0].conf
# # Hook to store the activations
# activations = {}
# def get_activation(name):
# def hook(model, input, output):
# activations[name] = output
# return hook
# # Register hooks for each layer you want to inspect
# for name, layer in model.model.named_modules():
# layer.register_forward_hook(get_activation(name))
# # Run the model to get activations
# results = model.predict(image_tensor, save=True, visualize=True)
# # # Print the activations
# # for name, activation in activations.items():
# # print(f"Activation from layer {name}: {activation}")
# # List activation names separately
# print("\nActivation layer names:")
# for name in activations.keys():
# print(name)
# # pred.backward()
# # Assuming 'model.23' is the layer of interest for bbox prediction and confidence
# activation = activations['model.23']['one2one'][0]
# act_23 = activations['model.23.cv3.2']
# act_dfl = activations['model.23.dfl.conv']
# act_conv = activations['model.0.conv']
# act_act = activations['model.0.act']
# # with torch.autograd.set_detect_anomaly(True):
# # pred.backward()
# grad = torch.autograd.grad(act_23, im, grad_outputs=torch.ones_like(act_23), create_graph=True, retain_graph=True)[0]
# # grad = torch.autograd.grad(pred, im, grad_outputs=torch.ones_like(pred), create_graph=True)[0]
# grad = torch.autograd.grad(activations['model.23']['one2one'][1][0],
# activations['model.23.one2one_cv3.2'],
# grad_outputs=torch.ones_like(activations['model.23']['one2one'][1][0]),
# create_graph=True, retain_graph=True)[0]
# # Print the results
# print(results)
# model.val(data='coco.yaml', batch=256)

View File

@ -387,6 +387,7 @@ class Model(nn.Module):
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
stream: bool = False, stream: bool = False,
predictor=None, predictor=None,
return_images: bool = False,
**kwargs, **kwargs,
) -> list: ) -> list:
""" """
@ -438,7 +439,7 @@ class Model(nn.Module):
self.predictor.save_dir = get_save_dir(self.predictor.args) self.predictor.save_dir = get_save_dir(self.predictor.args)
if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
self.predictor.set_prompts(prompts) self.predictor.set_prompts(prompts)
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream, return_images=return_images)
def track( def track(
self, self,
@ -590,6 +591,81 @@ class Model(nn.Module):
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train( def train(
self,
trainer=None,
debug=False,
**kwargs,
):
"""
Trains the model using the specified dataset and training configuration.
This method facilitates model training with a range of customizable settings and configurations. It supports
training with a custom trainer or the default training approach defined in the method. The method handles
different scenarios, such as resuming training from a checkpoint, integrating with Ultralytics HUB, and
updating model and configuration after training.
When using Ultralytics HUB, if the session already has a loaded model, the method prioritizes HUB training
arguments and issues a warning if local arguments are provided. It checks for pip updates and combines default
configurations, method-specific defaults, and user-provided arguments to configure the training process. After
training, it updates the model and its configurations, and optionally attaches metrics.
Args:
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
method uses a default trainer. Defaults to None.
**kwargs (any): Arbitrary keyword arguments representing the training configuration. These arguments are
used to customize various aspects of the training process.
Returns:
(dict | None): Training metrics if available and training is successful; otherwise, None.
Raises:
AssertionError: If the model is not a PyTorch model.
PermissionError: If there is a permission issue with the HUB session.
ModuleNotFoundError: If the HUB SDK is not installed.
"""
self._check_is_pytorch_model()
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
if any(kwargs):
LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
kwargs = self.session.train_args # overwrite kwargs
checks.check_pip_update_available()
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]} # method defaults
args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
if args.get("resume"):
args["resume"] = self.ckpt_path
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
if not args.get("resume"): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
if SETTINGS["hub"] is True and not self.session:
# Create a model in HUB
try:
self.session = self._get_hub_session(self.model_name)
if self.session:
self.session.create_model(args)
# Check model was created
if not getattr(self.session.model, "id", None):
self.session = None
except (PermissionError, ModuleNotFoundError):
# Ignore PermissionError and ModuleNotFoundError which indicates hub-sdk not installed
pass
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train(debug=debug)
# Update model and cfg after training
if RANK in (-1, 0):
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
self.model, _ = attempt_load_one_weight(ckpt)
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
return self.metrics
def train_pgt(
self, self,
trainer=None, trainer=None,
**kwargs, **kwargs,
@ -662,7 +738,7 @@ class Model(nn.Module):
self.overrides = self.model.args self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
return self.metrics return self.metrics
def tune( def tune(
self, self,
use_ray=False, use_ray=False,

View File

@ -0,0 +1,785 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Train a model on a dataset.
Usage:
$ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
"""
import math
import os
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
import numpy as np
import torch
from torch import distributed as dist
from torch import nn, optim
import matplotlib.pyplot as plt
import torchvision.transforms as T
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights
from ultralytics.utils import (
DEFAULT_CFG,
LOGGER,
RANK,
TQDM,
__version__,
callbacks,
clean_url,
colorstr,
emojis,
yaml_save,
)
from ultralytics.utils.autobatch import check_train_batch_size
from ultralytics.utils.checks import check_amp, check_file, check_imgsz, check_model_file_from_stem, print_args
from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.utils.files import get_latest_run
from ultralytics.utils.torch_utils import (
EarlyStopping,
ModelEMA,
de_parallel,
init_seeds,
one_cycle,
select_device,
strip_optimizer,
)
class PGTTrainer:
"""
BaseTrainer.
A base class for creating trainers.
Attributes:
args (SimpleNamespace): Configuration for the trainer.
validator (BaseValidator): Validator instance.
model (nn.Module): Model instance.
callbacks (defaultdict): Dictionary of callbacks.
save_dir (Path): Directory to save results.
wdir (Path): Directory to save weights.
last (Path): Path to the last checkpoint.
best (Path): Path to the best checkpoint.
save_period (int): Save checkpoint every x epochs (disabled if < 1).
batch_size (int): Batch size for training.
epochs (int): Number of epochs to train for.
start_epoch (int): Starting epoch for training.
device (torch.device): Device to use for training.
amp (bool): Flag to enable AMP (Automatic Mixed Precision).
scaler (amp.GradScaler): Gradient scaler for AMP.
data (str): Path to data.
trainset (torch.utils.data.Dataset): Training dataset.
testset (torch.utils.data.Dataset): Testing dataset.
ema (nn.Module): EMA (Exponential Moving Average) of the model.
resume (bool): Resume training from a checkpoint.
lf (nn.Module): Loss function.
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
best_fitness (float): The best fitness value achieved.
fitness (float): Current fitness value.
loss (float): Current loss value.
tloss (float): Total loss value.
loss_names (list): List of loss names.
csv (Path): Path to results CSV file.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BaseTrainer class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.check_resume(overrides)
self.device = select_device(self.args.device, self.args.batch)
self.validator = None
self.metrics = None
self.plots = {}
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
# Dirs
self.save_dir = get_save_dir(self.args)
self.args.name = self.save_dir.name # update name for loggers
self.wdir = self.save_dir / "weights" # weights dir
if RANK in (-1, 0):
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.args.save_dir = str(self.save_dir)
yaml_save(self.save_dir / "args.yaml", vars(self.args)) # save run args
self.last, self.best = self.wdir / "last.pt", self.wdir / "best.pt" # checkpoint paths
self.save_period = self.args.save_period
self.batch_size = self.args.batch
self.epochs = self.args.epochs
self.start_epoch = 0
if RANK == -1:
print_args(vars(self.args))
# Device
if self.device.type in ("cpu", "mps"):
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataset
self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolov8n -> yolov8n.pt
try:
if self.args.task == "classify":
self.data = check_cls_dataset(self.args.data)
elif self.args.data.split(".")[-1] in ("yaml", "yml") or self.args.task in (
"detect",
"segment",
"pose",
"obb",
):
self.data = check_det_dataset(self.args.data)
if "yaml_file" in self.data:
self.args.data = self.data["yaml_file"] # for validating 'yolo train data=url.zip' usage
except Exception as e:
raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None
# Optimization utils init
self.lf = None
self.scheduler = None
# Epoch level metrics
self.best_fitness = None
self.fitness = None
self.loss = None
self.tloss = None
self.loss_names = ["Loss"]
self.csv = self.save_dir / "results.csv"
self.plot_idx = [0, 1, 2]
# Callbacks
self.callbacks = _callbacks or callbacks.get_default_callbacks()
if RANK in (-1, 0):
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""Overrides the existing callbacks with the given callback."""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
"""Run all existing callbacks associated with a particular event."""
for callback in self.callbacks.get(event, []):
callback(self)
def train(self, debug=False):
"""Allow device='', device=None on Multi-GPU systems to default to device=0."""
if isinstance(self.args.device, str) and len(self.args.device): # i.e. device='0' or device='0,1,2,3'
world_size = len(self.args.device.split(","))
elif isinstance(self.args.device, (tuple, list)): # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list)
world_size = len(self.args.device)
elif torch.cuda.is_available(): # i.e. device=None or device='' or device=number
world_size = 1 # default to device 0
else: # i.e. device='cpu' or 'mps'
world_size = 0
# Run subprocess if DDP training, else train normally
if world_size > 1 and "LOCAL_RANK" not in os.environ:
# Argument checks
if self.args.rect:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'")
self.args.rect = False
if self.args.batch == -1:
LOGGER.warning(
"WARNING ⚠️ 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting "
"default 'batch=16'"
)
self.args.batch = 16
# Command
cmd, file = generate_ddp_command(world_size, self)
try:
LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}')
subprocess.run(cmd, check=True)
except Exception as e:
raise e
finally:
ddp_cleanup(self, str(file))
else:
self._do_train(world_size, debug=debug)
def _setup_scheduler(self):
"""Initialize training learning rate scheduler."""
if self.args.cos_lr:
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
else:
self.lf = lambda x: max(1 - x / self.epochs, 0) * (1.0 - self.args.lrf) + self.args.lrf # linear
self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
def _setup_ddp(self, world_size):
"""Initializes and sets the DistributedDataParallel parameters for training."""
torch.cuda.set_device(RANK)
self.device = torch.device("cuda", RANK)
# LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}')
os.environ["NCCL_BLOCKING_WAIT"] = "1" # set to enforce timeout
dist.init_process_group(
backend="nccl" if dist.is_nccl_available() else "gloo",
timeout=timedelta(seconds=10800), # 3 hours
rank=RANK,
world_size=world_size,
)
def _setup_train(self, world_size):
"""Builds dataloaders and optimizer on correct rank process."""
# Model
self.run_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
# Freeze layers
freeze_list = (
self.args.freeze
if isinstance(self.args.freeze, list)
else range(self.args.freeze)
if isinstance(self.args.freeze, int)
else []
)
always_freeze_names = [".dfl"] # always freeze these layers
freeze_layer_names = [f"model.{x}." for x in freeze_list] + always_freeze_names
for k, v in self.model.named_parameters():
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if any(x in k for x in freeze_layer_names):
LOGGER.info(f"Freezing layer '{k}'")
v.requires_grad = False
elif not v.requires_grad and v.dtype.is_floating_point: # only floating point Tensor can require gradients
LOGGER.info(
f"WARNING ⚠️ setting 'requires_grad=True' for frozen layer '{k}'. "
"See ultralytics.engine.trainer for customization of frozen layers."
)
v.requires_grad = True
# Check AMP
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them
self.amp = torch.tensor(check_amp(self.model), device=self.device)
callbacks.default_callbacks = callbacks_backup # restore callbacks
if RANK > -1 and world_size > 1: # DDP
dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None)
self.amp = bool(self.amp) # as boolean
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
if world_size > 1:
self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK])
# Check imgsz
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
self.stride = gs # for multiscale training
# Batch size
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
# Dataloaders
batch_size = self.batch_size // max(world_size, 1)
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train")
if RANK in (-1, 0):
# Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects.
self.test_loader = self.get_dataloader(
self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val"
)
self.validator = self.get_validator()
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))
self.ema = ModelEMA(self.model)
if self.args.plots:
self.plot_training_labels()
# Optimizer
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
self.optimizer = self.build_optimizer(
model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
momentum=self.args.momentum,
decay=weight_decay,
iterations=iterations,
)
# Scheduler
self._setup_scheduler()
self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
self.resume_training(ckpt)
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
self.run_callbacks("on_pretrain_routine_end")
def _do_train(self, world_size=1, debug=False):
"""Train completed, evaluate and plot if specified by arguments."""
if world_size > 1:
self._setup_ddp(world_size)
self._setup_train(world_size)
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations
last_opt_step = -1
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
self.run_callbacks("on_train_start")
LOGGER.info(
f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...")
)
if self.args.close_mosaic:
base_idx = (self.epochs - self.args.close_mosaic) * nb
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
epoch = self.start_epoch
while True:
self.epoch = epoch
self.run_callbacks("on_train_epoch_start")
self.model.train()
if RANK != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic):
self._close_dataloader_mosaic()
self.train_loader.reset()
if RANK in (-1, 0):
LOGGER.info(self.progress_string())
pbar = TQDM(enumerate(self.train_loader), total=nb)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.run_callbacks("on_train_batch_start")
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()))
for j, x in enumerate(self.optimizer.param_groups):
# Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x["lr"] = np.interp(
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)]
)
if "momentum" in x:
x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
(self.loss, self.loss_items), images = self.model(batch, return_images=True)
if debug and (i % 250):
grad = torch.autograd.grad(self.loss, images, create_graph=True)[0]
# Convert tensors to numpy arrays
images_np = images.detach().cpu().numpy().transpose(0, 2, 3, 1)
grad_np = grad.detach().cpu().numpy().transpose(0, 2, 3, 1)
# Normalize grad for visualization
grad_np = (grad_np - grad_np.min()) / (grad_np.max() - grad_np.min())
for ix in range(images_np.shape[0]):
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
ax[0].imshow(images_np[i])
ax[0].set_title('Image')
ax[1].imshow(grad_np[i], cmap='jet')
ax[1].set_title('Gradient')
ax[2].imshow(images_np[i])
ax[2].imshow(grad_np[i], cmap='jet', alpha=0.5)
ax[2].set_title('Overlay')
save_dir_attr = "figures/attributions"
if not os.path.exists(save_dir_attr):
os.makedirs(save_dir_attr)
plt.savefig(f'{save_dir_attr}/debug_epoch_{epoch}_batch_{i}_image_{ix}.png')
plt.close(fig)
if RANK != -1:
self.loss *= world_size
self.tloss = (
(self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items
)
# Backward
self.scaler.scale(self.loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# Timed stopping
if self.args.time:
self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600)
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
self.stop = broadcast_list[0]
if self.stop: # training time exceeded
break
# Log
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if RANK in (-1, 0):
pbar.set_description(
("%11s" * 2 + "%11.4g" * (2 + loss_len))
% (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])
)
self.run_callbacks("on_batch_end")
if self.args.plots and ni in self.plot_idx:
self.plot_training_samples(batch, ni)
self.run_callbacks("on_train_batch_end")
self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.run_callbacks("on_train_epoch_end")
if RANK in (-1, 0):
final_epoch = epoch + 1 == self.epochs
self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])
# Validation
if (self.args.val and (((epoch+1) % self.args.val_period == 0) or (self.epochs - epoch) <= 10)) \
or final_epoch or self.stopper.possible_stop or self.stop:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch
if self.args.time:
self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600)
# Save model
if self.args.save or final_epoch:
self.save_model()
self.run_callbacks("on_model_save")
# Scheduler
t = time.time()
self.epoch_time = t - self.epoch_time_start
self.epoch_time_start = t
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress 'Detected lr_scheduler.step() before optimizer.step()'
if self.args.time:
mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1)
self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time)
self._setup_scheduler()
self.scheduler.last_epoch = self.epoch # do not move
self.stop |= epoch >= self.epochs # stop if exceeded epochs
self.scheduler.step()
self.run_callbacks("on_fit_epoch_end")
torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors
# Early Stopping
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
self.stop = broadcast_list[0]
if self.stop:
break # must break all DDP ranks
epoch += 1
if RANK in (-1, 0):
# Do final val with best.pt
LOGGER.info(
f"\n{epoch - self.start_epoch + 1} epochs completed in "
f"{(time.time() - self.train_time_start) / 3600:.3f} hours."
)
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.run_callbacks("on_train_end")
torch.cuda.empty_cache()
self.run_callbacks("teardown")
def save_model(self):
"""Save model training checkpoints with additional metadata."""
import pandas as pd # scope for faster startup
metrics = {**self.metrics, **{"fitness": self.fitness}}
results = {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()}
ckpt = {
"epoch": self.epoch,
"best_fitness": self.best_fitness,
"model": deepcopy(de_parallel(self.model)).half(),
"ema": deepcopy(self.ema.ema).half(),
"updates": self.ema.updates,
"optimizer": self.optimizer.state_dict(),
"train_args": vars(self.args), # save as dict
"train_metrics": metrics,
"train_results": results,
"date": datetime.now().isoformat(),
"version": __version__,
"license": "AGPL-3.0 (https://ultralytics.com/license)",
"docs": "https://docs.ultralytics.com",
}
# Save last and best
torch.save(ckpt, self.last)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best)
if (self.save_period > 0) and (self.epoch > 0) and (self.epoch % self.save_period == 0):
torch.save(ckpt, self.wdir / f"epoch{self.epoch}.pt")
@staticmethod
def get_dataset(data):
"""
Get train, val path from data dict if it exists.
Returns None if data format is not recognized.
"""
return data["train"], data.get("val") or data.get("test")
def setup_model(self):
"""Load/create/download model for any task."""
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model, weights = self.model, None
ckpt = None
if str(model).endswith(".pt"):
weights, ckpt = attempt_load_one_weight(model)
cfg = ckpt["model"].yaml
else:
cfg = model
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights)
return ckpt
def optimizer_step(self):
"""Perform a single step of the training optimizer with gradient clipping and EMA update."""
self.scaler.unscale_(self.optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.ema:
self.ema.update(self.model)
def preprocess_batch(self, batch):
"""Allows custom preprocessing model inputs and ground truths depending on task type."""
return batch
def validate(self):
"""
Runs validation on test set using self.validator.
The returned dict is expected to contain "fitness" key.
"""
metrics = self.validator(self)
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = fitness
return metrics, fitness
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get model and raise NotImplementedError for loading cfg files."""
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):
"""Returns a NotImplementedError when the get_validator function is called."""
raise NotImplementedError("get_validator function not implemented in trainer")
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""Returns dataloader derived from torch.data.Dataloader."""
raise NotImplementedError("get_dataloader function not implemented in trainer")
def build_dataset(self, img_path, mode="train", batch=None):
"""Build dataset."""
raise NotImplementedError("build_dataset function not implemented in trainer")
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor.
Note:
This is not needed for classification but necessary for segmentation & detection
"""
return {"loss": loss_items} if loss_items is not None else ["loss"]
def set_model_attributes(self):
"""To set or update model parameters before training."""
self.model.names = self.data["names"]
def build_targets(self, preds, targets):
"""Builds target tensors for training YOLO model."""
pass
def progress_string(self):
"""Returns a string describing training progress."""
return ""
# TODO: may need to put these following functions into callback
def plot_training_samples(self, batch, ni):
"""Plots training samples during YOLO training."""
pass
def plot_training_labels(self):
"""Plots training labels for YOLO model."""
pass
def save_metrics(self, metrics):
"""Saves training metrics to a CSV file."""
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
with open(self.csv, "a") as f:
f.write(s + ("%23.5g," * n % tuple([self.epoch + 1] + vals)).rstrip(",") + "\n")
def plot_metrics(self):
"""Plot and display metrics visually."""
pass
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
path = Path(name)
self.plots[path] = {"data": data, "timestamp": time.time()}
def final_eval(self):
"""Performs final evaluation and validation for object detection YOLO model."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
LOGGER.info(f"\nValidating {f}...")
self.validator.args.plots = self.args.plots
self.metrics = self.validator(model=f)
self.metrics.pop("fitness", None)
self.run_callbacks("on_fit_epoch_end")
def check_resume(self, overrides):
"""Check if resume checkpoint exists and update arguments accordingly."""
resume = self.args.resume
if resume:
try:
exists = isinstance(resume, (str, Path)) and Path(resume).exists()
last = Path(check_file(resume) if exists else get_latest_run())
# Check that resume data YAML exists, otherwise strip to force re-download of dataset
ckpt_args = attempt_load_weights(last).args
if not Path(ckpt_args["data"]).exists():
ckpt_args["data"] = self.args.data
resume = True
self.args = get_cfg(ckpt_args)
self.args.model = self.args.resume = str(last) # reinstate model
for k in "imgsz", "batch", "device": # allow arg updates to reduce memory or update device on resume
if k in overrides:
setattr(self.args, k, overrides[k])
except Exception as e:
raise FileNotFoundError(
"Resume checkpoint not found. Please pass a valid checkpoint to resume from, "
"i.e. 'yolo train resume model=path/to/last.pt'"
) from e
self.resume = resume
def resume_training(self, ckpt):
"""Resume YOLO training from given epoch and best fitness."""
if ckpt is None or not self.resume:
return
best_fitness = 0.0
start_epoch = ckpt["epoch"] + 1
if ckpt["optimizer"] is not None:
self.optimizer.load_state_dict(ckpt["optimizer"]) # optimizer
best_fitness = ckpt["best_fitness"]
if self.ema and ckpt.get("ema"):
self.ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) # EMA
self.ema.updates = ckpt["updates"]
assert start_epoch > 0, (
f"{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n"
f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'"
)
LOGGER.info(f"Resuming training {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs")
if self.epochs < start_epoch:
LOGGER.info(
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs."
)
self.epochs += ckpt["epoch"] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
if start_epoch > (self.epochs - self.args.close_mosaic):
self._close_dataloader_mosaic()
def _close_dataloader_mosaic(self):
"""Update dataloaders to stop using mosaic augmentation."""
if hasattr(self.train_loader.dataset, "mosaic"):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, "close_mosaic"):
LOGGER.info("Closing dataloader mosaic")
self.train_loader.dataset.close_mosaic(hyp=self.args)
def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
"""
Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, momentum,
weight decay, and number of iterations.
Args:
model (torch.nn.Module): The model for which to build an optimizer.
name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected
based on the number of iterations. Default: 'auto'.
lr (float, optional): The learning rate for the optimizer. Default: 0.001.
momentum (float, optional): The momentum factor for the optimizer. Default: 0.9.
decay (float, optional): The weight decay for the optimizer. Default: 1e-5.
iterations (float, optional): The number of iterations, which determines the optimizer if
name is 'auto'. Default: 1e5.
Returns:
(torch.optim.Optimizer): The constructed optimizer.
"""
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
if name == "auto":
LOGGER.info(
f"{colorstr('optimizer:')} 'optimizer=auto' found, "
f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and "
f"determining best 'optimizer', 'lr0' and 'momentum' automatically... "
)
nc = getattr(model, "nc", 10) # number of classes
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
for module_name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
fullname = f"{module_name}.{param_name}" if module_name else param_name
if "bias" in fullname: # bias (no decay)
g[2].append(param)
elif isinstance(module, bn): # weight (no decay)
g[1].append(param)
else: # weight (with decay)
g[0].append(param)
if name in ("Adam", "Adamax", "AdamW", "NAdam", "RAdam"):
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == "RMSProp":
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == "SGD":
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(
f"Optimizer '{name}' not found in list of available optimizers "
f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]."
"To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics."
)
optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay
optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups "
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)'
)
return optimizer

View File

@ -206,7 +206,7 @@ class BasePredictor:
self.vid_writer = {} self.vid_writer = {}
@smart_inference_mode() @smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs): def stream_inference(self, source=None, model=None, return_images = False, *args, **kwargs):
"""Streams real-time inference on camera feed and saves results to file.""" """Streams real-time inference on camera feed and saves results to file."""
if self.args.verbose: if self.args.verbose:
LOGGER.info("") LOGGER.info("")
@ -243,6 +243,9 @@ class BasePredictor:
with profilers[0]: with profilers[0]:
im = self.preprocess(im0s) im = self.preprocess(im0s)
if return_images:
im = im.requires_grad_(True)
# Inference # Inference
with profilers[1]: with profilers[1]:
preds = self.inference(im, *args, **kwargs) preds = self.inference(im, *args, **kwargs)
@ -272,7 +275,7 @@ class BasePredictor:
LOGGER.info("\n".join(s)) LOGGER.info("\n".join(s))
self.run_callbacks("on_predict_batch_end") self.run_callbacks("on_predict_batch_end")
yield from self.results yield from (self.results, im)
# Release assets # Release assets
for v in self.vid_writer.values(): for v in self.vid_writer.values():

View File

@ -1,7 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import DetectionPredictor from .predict import DetectionPredictor
from .pgt_train import PGTDetectionTrainer
from .train import DetectionTrainer from .train import DetectionTrainer
from .val import DetectionValidator from .val import DetectionValidator
__all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator" __all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator", "PGTDetectionTrainer"

View File

@ -0,0 +1,144 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import random
from copy import copy
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.engine.pgt_trainer import PGTTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class PGTDetectionTrainer(PGTTrainer):
"""
A class extending the BaseTrainer class for training based on a detection model.
Example:
```python
from ultralytics.models.yolo.detect import DetectionTrainer
args = dict(model='yolov8n.pt', data='coco8.yaml', epochs=3)
trainer = DetectionTrainer(overrides=args)
trainer.train()
```
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
Build YOLO Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""Construct and return dataloader."""
assert mode in ["train", "val"]
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train"
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
workers = self.args.workers if mode == "train" else self.args.workers * 2
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images by scaling and converting to float."""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
if self.args.multi_scale:
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
batch["img"] = imgs
return batch
def set_model_attributes(self):
"""Nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
# self.args.box *= 3 / nl # scale to layers
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.names = self.data["names"] # attach class names to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return a YOLO detection model."""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Returns a DetectionValidator for YOLO model validation."""
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor.
Not needed for classification but necessary for segmentation & detection
"""
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def progress_string(self):
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"Instances",
"Size",
)
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png
def plot_training_labels(self):
"""Create a labeled training plot of the YOLO model."""
boxes = np.concatenate([lb["bboxes"] for lb in self.train_loader.dataset.labels], 0)
cls = np.concatenate([lb["cls"] for lb in self.train_loader.dataset.labels], 0)
plot_labels(boxes, cls.squeeze(), names=self.data["names"], save_dir=self.save_dir, on_plot=self.on_plot)

View File

@ -3,6 +3,8 @@ from ultralytics.nn.tasks import YOLOv10DetectionModel
from .val import YOLOv10DetectionValidator from .val import YOLOv10DetectionValidator
from .predict import YOLOv10DetectionPredictor from .predict import YOLOv10DetectionPredictor
from .train import YOLOv10DetectionTrainer from .train import YOLOv10DetectionTrainer
from .pgt_train import YOLOv10PGTDetectionTrainer
# from .pgt_trainer import YOLOv10DetectionTrainer
from huggingface_hub import PyTorchModelHubMixin from huggingface_hub import PyTorchModelHubMixin
from .card import card_template_text from .card import card_template_text
@ -30,6 +32,7 @@ class YOLOv10(Model, PyTorchModelHubMixin, model_card_template=card_template_tex
"detect": { "detect": {
"model": YOLOv10DetectionModel, "model": YOLOv10DetectionModel,
"trainer": YOLOv10DetectionTrainer, "trainer": YOLOv10DetectionTrainer,
"pgt_trainer": YOLOv10PGTDetectionTrainer,
"validator": YOLOv10DetectionValidator, "validator": YOLOv10DetectionValidator,
"predictor": YOLOv10DetectionPredictor, "predictor": YOLOv10DetectionPredictor,
}, },

View File

@ -0,0 +1,21 @@
from ultralytics.models.yolo.detect import DetectionTrainer
from ultralytics.models.yolo.detect import PGTDetectionTrainer
from .val import YOLOv10DetectionValidator
from .model import YOLOv10DetectionModel
from copy import copy
from ultralytics.utils import RANK
class YOLOv10PGTDetectionTrainer(PGTDetectionTrainer):
def get_validator(self):
"""Returns a DetectionValidator for YOLO model validation."""
self.loss_names = "box_om", "cls_om", "dfl_om", "box_oo", "cls_oo", "dfl_oo",
return YOLOv10DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return a YOLO detection model."""
model = YOLOv10DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model

View File

@ -93,7 +93,7 @@ class BaseModel(nn.Module):
return self.loss(x, *args, **kwargs) return self.loss(x, *args, **kwargs)
return self.predict(x, *args, **kwargs) return self.predict(x, *args, **kwargs)
def predict(self, x, profile=False, visualize=False, augment=False, embed=None): def predict(self, x, profile=False, visualize=False, augment=False, embed=None, return_images=False):
""" """
Perform a forward pass through the network. Perform a forward pass through the network.
@ -107,9 +107,12 @@ class BaseModel(nn.Module):
Returns: Returns:
(torch.Tensor): The last output of the model. (torch.Tensor): The last output of the model.
""" """
if return_images:
x = x.requires_grad_(True)
if augment: if augment:
return self._predict_augment(x) return self._predict_augment(x)
return self._predict_once(x, profile, visualize, embed) out = self._predict_once(x, profile, visualize, embed)
return (out, x) if return_images else out
def _predict_once(self, x, profile=False, visualize=False, embed=None): def _predict_once(self, x, profile=False, visualize=False, embed=None):
""" """
@ -140,13 +143,13 @@ class BaseModel(nn.Module):
return torch.unbind(torch.cat(embeddings, 1), dim=0) return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x return x
def _predict_augment(self, x): def _predict_augment(self, x, *args, **kwargs):
"""Perform augmentations on input image x and return augmented inference.""" """Perform augmentations on input image x and return augmented inference."""
LOGGER.warning( LOGGER.warning(
f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. " f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. "
f"Reverting to single-scale inference instead." f"Reverting to single-scale inference instead."
) )
return self._predict_once(x) return self._predict_once(x, *args, **kwargs)
def _profile_one_layer(self, m, x, dt): def _profile_one_layer(self, m, x, dt):
""" """
@ -260,7 +263,7 @@ class BaseModel(nn.Module):
if verbose: if verbose:
LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights") LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")
def loss(self, batch, preds=None): def loss(self, batch, preds=None, return_images=False):
""" """
Compute loss. Compute loss.
@ -271,8 +274,12 @@ class BaseModel(nn.Module):
if not hasattr(self, "criterion"): if not hasattr(self, "criterion"):
self.criterion = self.init_criterion() self.criterion = self.init_criterion()
preds = self.forward(batch["img"]) if preds is None else preds preds = self.forward(batch["img"], return_images=return_images) if preds is None else preds
return self.criterion(preds, batch) if return_images:
preds, im = preds
loss = self.criterion(preds, batch)
out = loss if not return_images else (loss, im)
return out
def init_criterion(self): def init_criterion(self):
"""Initialize the loss criterion for the BaseModel.""" """Initialize the loss criterion for the BaseModel."""