diff --git a/README.md b/README.md index 3bf3fd3d..ce82e1a6 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458) +# [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458) 🚀 Official PyTorch implementation of **YOLOv10**. @@ -29,7 +29,7 @@ Over the past years, YOLOs have emerged as the predominant paradigm in the field - 2024/05/25: Add [Transformers.js demo](https://huggingface.co/spaces/Xenova/yolov10-web) and onnx weights(yolov10[n](https://huggingface.co/onnx-community/yolov10n)/[s](https://huggingface.co/onnx-community/yolov10s)/[m](https://huggingface.co/onnx-community/yolov10m)/[b](https://huggingface.co/onnx-community/yolov10b)/[l](https://huggingface.co/onnx-community/yolov10l)/[x](https://huggingface.co/onnx-community/yolov10x)). Thanks to [xenova](https://github.com/xenova)! - 2024/05/25: Add [colab demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s), [HuggingFace Demo](https://huggingface.co/spaces/kadirnar/Yolov10), and [HuggingFace Model Page](https://huggingface.co/kadirnar/Yolov10). Thanks to [SkalskiP](https://github.com/SkalskiP) and [kadirnar](https://github.com/kadirnar)! -## Performance +## Performance 📈 COCO | Model | Test Size | #Params | FLOPs | APval | Latency | |:---------------|:----:|:---:|:--:|:--:|:--:| @@ -40,7 +40,7 @@ COCO | [YOLOv10-L](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt) | 640 | 24.4M | 120.3G | 53.2% | 7.28ms | | [YOLOv10-X](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt) | 640 | 29.5M | 160.4G | 54.4% | 10.70ms | -## Installation +## Installation 💻 `conda` virtual environment is recommended. ``` conda create -n yolov10 python=3.9 @@ -48,30 +48,30 @@ conda activate yolov10 pip install -r requirements.txt pip install -e . ``` -## Demo +## Demo 🛠️ ``` wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt python app.py # Please visit http://127.0.0.1:7860 ``` -## Validation +## Validation ✔️ [`yolov10n.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt) [`yolov10s.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt) [`yolov10m.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt) [`yolov10b.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt) [`yolov10l.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt) [`yolov10x.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt) ``` yolo val model=yolov10n/s/m/b/l/x.pt data=coco.yaml batch=256 ``` -## Training +## Training 🏋️ ``` yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7 ``` -## Prediction +## Prediction 🔍 ``` yolo predict model=yolov10n/s/m/b/l/x.pt ``` -## Export +## Export 📦 ``` # End-to-End ONNX yolo export model=yolov10n/s/m/b/l/x.pt format=onnx opset=13 simplify @@ -86,13 +86,13 @@ trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine -- yolo predict model=yolov10n/s/m/b/l/x.engine ``` -## Acknowledgement +## Acknowledgement 🙏 The code base is built with [ultralytics](https://github.com/ultralytics/ultralytics) and [RT-DETR](https://github.com/lyuwenyu/RT-DETR). Thanks for the great implementations! -## Citation +## Citation 📜 If our code or models help your work, please cite our paper: ```BibTeX