mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:14:55 +08:00
ultralytics 8.0.212
add Windows UTF-8 support (#6407)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Abirami Vina <abirami.vina@gmail.com>
This commit is contained in:
parent
14c05f0dd1
commit
b6baae584c
14
README.md
14
README.md
@ -44,7 +44,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
## Documentation
|
## <div align="center">Documentation</div>
|
||||||
|
|
||||||
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
||||||
|
|
||||||
@ -98,7 +98,7 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## Models
|
## <div align="center">Models</div>
|
||||||
|
|
||||||
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
||||||
|
|
||||||
@ -203,7 +203,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## Integrations
|
## <div align="center">Integrations</div>
|
||||||
|
|
||||||
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
||||||
|
|
||||||
@ -231,14 +231,14 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|||||||
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
||||||
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
||||||
|
|
||||||
## Ultralytics HUB
|
## <div align="center">Ultralytics HUB</div>
|
||||||
|
|
||||||
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
|
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
|
||||||
|
|
||||||
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
||||||
|
|
||||||
## Contribute
|
## <div align="center">Contribute</div>
|
||||||
|
|
||||||
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
||||||
|
|
||||||
@ -247,14 +247,14 @@ We love your input! YOLOv5 and YOLOv8 would not be possible without help from ou
|
|||||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
||||||
|
|
||||||
## License
|
## <div align="center">License</div>
|
||||||
|
|
||||||
Ultralytics offers two licensing options to accommodate diverse use cases:
|
Ultralytics offers two licensing options to accommodate diverse use cases:
|
||||||
|
|
||||||
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
|
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
|
||||||
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
|
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
|
||||||
|
|
||||||
## Contact
|
## <div align="center">Contact</div>
|
||||||
|
|
||||||
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
|
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
## 文档
|
## <div align="center">文档</div>
|
||||||
|
|
||||||
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
|
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
|
||||||
|
|
||||||
@ -98,7 +98,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## 模型
|
## <div align="center">模型</div>
|
||||||
|
|
||||||
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
|
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
|
||||||
|
|
||||||
@ -202,7 +202,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## 集成
|
## <div align="center">集成</div>
|
||||||
|
|
||||||
我们与领先的AI平台的关键整合扩展了Ultralytics产品的功能,增强了数据集标签化、训练、可视化和模型管理等任务。探索Ultralytics如何与[Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic以及[OpenVINO](https://docs.ultralytics.com/integrations/openvino)合作,优化您的AI工作流程。
|
我们与领先的AI平台的关键整合扩展了Ultralytics产品的功能,增强了数据集标签化、训练、可视化和模型管理等任务。探索Ultralytics如何与[Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic以及[OpenVINO](https://docs.ultralytics.com/integrations/openvino)合作,优化您的AI工作流程。
|
||||||
|
|
||||||
@ -230,14 +230,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||||||
| :--------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
|
| :--------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
|
||||||
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |
|
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |
|
||||||
|
|
||||||
## Ultralytics HUB
|
## <div align="center">Ultralytics HUB</div>
|
||||||
|
|
||||||
体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
|
体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
|
||||||
|
|
||||||
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
||||||
|
|
||||||
## 贡献
|
## <div align="center">贡献</div>
|
||||||
|
|
||||||
我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
|
我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
|
||||||
|
|
||||||
@ -246,14 +246,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
||||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
||||||
|
|
||||||
## 许可证
|
## <div align="center">许可证</div>
|
||||||
|
|
||||||
Ultralytics 提供两种许可证选项以适应各种使用场景:
|
Ultralytics 提供两种许可证选项以适应各种使用场景:
|
||||||
|
|
||||||
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件以了解更多细节。
|
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件以了解更多细节。
|
||||||
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
|
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
|
||||||
|
|
||||||
## 联系方式
|
## <div align="center">联系方式</div>
|
||||||
|
|
||||||
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
|
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
---
|
---
|
||||||
comments: true
|
comments: true
|
||||||
Description: A guide to help determine which deployment option to choose for your YOLOv8 model, including essential considerations.
|
description: A guide to help determine which deployment option to choose for your YOLOv8 model, including essential considerations.
|
||||||
keywords: YOLOv8, Deployment, PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow, Export
|
keywords: YOLOv8, Deployment, PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow, Export
|
||||||
---
|
---
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
---
|
---
|
||||||
comments: true
|
comments: true
|
||||||
Description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
|
description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
|
||||||
keywords: YOLOv8, Performance metrics, Object detection, Intersection over Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Precision, Recall, Validation mode, Ultralytics
|
keywords: YOLOv8, Performance metrics, Object detection, Intersection over Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Precision, Recall, Validation mode, Ultralytics
|
||||||
---
|
---
|
||||||
|
|
||||||
|
@ -133,7 +133,7 @@ You can control the number of image predictions that Comet ML logs during your e
|
|||||||
```python
|
```python
|
||||||
import os
|
import os
|
||||||
os.environ["COMET_MAX_IMAGE_PREDICTIONS"] = "200"
|
os.environ["COMET_MAX_IMAGE_PREDICTIONS"] = "200"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Batch Logging Interval
|
### Batch Logging Interval
|
||||||
|
|
||||||
|
@ -71,11 +71,11 @@ You can use RT-DETR for object detection tasks using the `ultralytics` pip packa
|
|||||||
|
|
||||||
### Supported Modes
|
### Supported Modes
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :heavy_check_mark: |
|
| Validation | ✅ |
|
||||||
| Training | :heavy_check_mark: |
|
| Training | ✅ |
|
||||||
|
|
||||||
## Citations and Acknowledgements
|
## Citations and Acknowledgements
|
||||||
|
|
||||||
|
@ -131,11 +131,11 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
|||||||
|
|
||||||
## Operating Modes
|
## Operating Modes
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :x: |
|
| Validation | ❌ |
|
||||||
| Training | :x: |
|
| Training | ❌ |
|
||||||
|
|
||||||
## SAM comparison vs YOLOv8
|
## SAM comparison vs YOLOv8
|
||||||
|
|
||||||
|
@ -94,11 +94,11 @@ The YOLO-NAS models are primarily designed for object detection tasks. You can d
|
|||||||
|
|
||||||
The YOLO-NAS models support both inference and validation modes, allowing you to predict and validate results with ease. Training mode, however, is currently not supported.
|
The YOLO-NAS models support both inference and validation modes, allowing you to predict and validate results with ease. Training mode, however, is currently not supported.
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :heavy_check_mark: |
|
| Validation | ✅ |
|
||||||
| Training | :x: |
|
| Training | ❌ |
|
||||||
|
|
||||||
Harness the power of the YOLO-NAS models to drive your object detection tasks to new heights of performance and speed.
|
Harness the power of the YOLO-NAS models to drive your object detection tasks to new heights of performance and speed.
|
||||||
|
|
||||||
|
@ -28,11 +28,11 @@ YOLOv5u represents an advancement in object detection methodologies. Originating
|
|||||||
|
|
||||||
## Supported Modes
|
## Supported Modes
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :heavy_check_mark: |
|
| Validation | ✅ |
|
||||||
| Training | :heavy_check_mark: |
|
| Training | ✅ |
|
||||||
|
|
||||||
!!! Performance
|
!!! Performance
|
||||||
|
|
||||||
|
@ -85,11 +85,11 @@ You can use YOLOv6 for object detection tasks using the Ultralytics pip package.
|
|||||||
|
|
||||||
## Supported Modes
|
## Supported Modes
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :heavy_check_mark: |
|
| Validation | ✅ |
|
||||||
| Training | :heavy_check_mark: |
|
| Training | ✅ |
|
||||||
|
|
||||||
## Citations and Acknowledgements
|
## Citations and Acknowledgements
|
||||||
|
|
||||||
|
@ -30,11 +30,11 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||||||
|
|
||||||
## Supported Modes
|
## Supported Modes
|
||||||
|
|
||||||
| Mode | Supported |
|
| Mode | Supported |
|
||||||
|------------|--------------------|
|
|------------|-----------|
|
||||||
| Inference | :heavy_check_mark: |
|
| Inference | ✅ |
|
||||||
| Validation | :heavy_check_mark: |
|
| Validation | ✅ |
|
||||||
| Training | :heavy_check_mark: |
|
| Training | ✅ |
|
||||||
|
|
||||||
!!! Performance
|
!!! Performance
|
||||||
|
|
||||||
|
@ -148,12 +148,13 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
|
|||||||
Ultralytics `yolo` commands use the following syntax:
|
Ultralytics `yolo` commands use the following syntax:
|
||||||
```bash
|
```bash
|
||||||
yolo TASK MODE ARGS
|
yolo TASK MODE ARGS
|
||||||
|
|
||||||
Where TASK (optional) is one of [detect, segment, classify]
|
|
||||||
MODE (required) is one of [train, val, predict, export, track]
|
|
||||||
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
|
||||||
```
|
```
|
||||||
See all ARGS in the full [Configuration Guide](usage/cfg.md) or with `yolo cfg`
|
|
||||||
|
- `TASK` (optional) is one of ([detect](tasks/detect.md), [segment](tasks/segment.md), [classify](tasks/classify.md), [pose](tasks/pose.md))
|
||||||
|
- `MODE` (required) is one of ([train](modes/train.md), [val](modes/val.md), [predict](modes/predict.md), [export](modes/export.md), [track](modes/track.md))
|
||||||
|
- `ARGS` (optional) are `arg=value` pairs like `imgsz=640` that override defaults.
|
||||||
|
|
||||||
|
See all `ARGS` in the full [Configuration Guide](usage/cfg.md) or with the `yolo cfg` CLI command.
|
||||||
|
|
||||||
=== "Train"
|
=== "Train"
|
||||||
|
|
||||||
@ -197,11 +198,12 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
|
|||||||
|
|
||||||
!!! warning "Warning"
|
!!! warning "Warning"
|
||||||
|
|
||||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||||||
|
|
||||||
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
||||||
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
|
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ (missing `=`)
|
||||||
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌
|
- `yolo predict model=yolov8n.pt, imgsz=640, conf=0.25` ❌ (do not use `,`)
|
||||||
|
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ (do not use `--`)
|
||||||
|
|
||||||
[CLI Guide](usage/cli.md){ .md-button .md-button--primary}
|
[CLI Guide](usage/cli.md){ .md-button .md-button--primary}
|
||||||
|
|
||||||
|
@ -1,3 +1,8 @@
|
|||||||
|
---
|
||||||
|
description: Dive into the intricacies of YOLO tasks.py. Learn about DetectionModel, PoseModel and more for powerful AI development.
|
||||||
|
keywords: Ultralytics, YOLO, nn tasks, DetectionModel, PoseModel, RTDETRDetectionModel, model weights, parse model, AI development
|
||||||
|
---
|
||||||
|
|
||||||
# Reference for `ultralytics/nn/tasks.py`
|
# Reference for `ultralytics/nn/tasks.py`
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
|
@ -21,10 +21,6 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
|
|||||||
## ::: ultralytics.utils.IterableSimpleNamespace
|
## ::: ultralytics.utils.IterableSimpleNamespace
|
||||||
<br><br>
|
<br><br>
|
||||||
|
|
||||||
---
|
|
||||||
## ::: ultralytics.utils.EmojiFilter
|
|
||||||
<br><br>
|
|
||||||
|
|
||||||
---
|
---
|
||||||
## ::: ultralytics.utils.ThreadingLocked
|
## ::: ultralytics.utils.ThreadingLocked
|
||||||
<br><br>
|
<br><br>
|
||||||
|
@ -1,3 +1,8 @@
|
|||||||
|
---
|
||||||
|
description: Deploy ML models effortlessly with Ultralytics TritonRemoteModel. Simplify serving with our comprehensive utils guide.
|
||||||
|
keywords: Ultralytics, YOLO, TritonRemoteModel, machine learning, model serving, deployment, utils, documentation
|
||||||
|
---
|
||||||
|
|
||||||
# Reference for `ultralytics/utils/triton.py`
|
# Reference for `ultralytics/utils/triton.py`
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
|
@ -23,10 +23,9 @@ class MarkdownLinkFixer:
|
|||||||
self.update_links = update_links
|
self.update_links = update_links
|
||||||
self.update_frontmatter = update_frontmatter
|
self.update_frontmatter = update_frontmatter
|
||||||
self.update_iframes = update_iframes
|
self.update_iframes = update_iframes
|
||||||
self.md_link_regex = re.compile(r'\[([^\]]+)\]\(([^:\)]+)\.md\)')
|
self.md_link_regex = re.compile(r'\[([^]]+)]\(([^:)]+)\.md\)')
|
||||||
self.front_matter_regex = re.compile(r'^(comments|description|keywords):.*$', re.MULTILINE)
|
|
||||||
self.translations = {
|
self.translations = {
|
||||||
'zh': ['评论', '描述', '关键词'], # Mandarin Chinese (Simplified)
|
'zh': ['评论', '描述', '关键词'], # Mandarin Chinese (Simplified) warning, sometimes translates as 关键字
|
||||||
'es': ['comentarios', 'descripción', 'palabras clave'], # Spanish
|
'es': ['comentarios', 'descripción', 'palabras clave'], # Spanish
|
||||||
'ru': ['комментарии', 'описание', 'ключевые слова'], # Russian
|
'ru': ['комментарии', 'описание', 'ключевые слова'], # Russian
|
||||||
'pt': ['comentários', 'descrição', 'palavras-chave'], # Portuguese
|
'pt': ['comentários', 'descrição', 'palavras-chave'], # Portuguese
|
||||||
@ -44,15 +43,17 @@ class MarkdownLinkFixer:
|
|||||||
for term, eng_key in zip(terms, english_keys):
|
for term, eng_key in zip(terms, english_keys):
|
||||||
if eng_key == 'comments':
|
if eng_key == 'comments':
|
||||||
# Replace comments key and set its value to 'true'
|
# Replace comments key and set its value to 'true'
|
||||||
content = re.sub(rf'{term} *:.*', f'{eng_key}: true', content)
|
content = re.sub(rf'{term} *[::].*', f'{eng_key}: true', content)
|
||||||
else:
|
else:
|
||||||
content = re.sub(rf'{term} *:', f'{eng_key}:', content)
|
content = re.sub(rf'{term} *[::] *', f'{eng_key}: ', content)
|
||||||
|
|
||||||
return content
|
return content
|
||||||
|
|
||||||
def update_iframe(self, content):
|
@staticmethod
|
||||||
|
def update_iframe(content):
|
||||||
"""Update the 'allow' attribute of iframe if it does not contain the specific English permissions."""
|
"""Update the 'allow' attribute of iframe if it does not contain the specific English permissions."""
|
||||||
english_permissions = 'accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share'
|
english_permissions = \
|
||||||
|
'accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share'
|
||||||
pattern = re.compile(f'allow="(?!{re.escape(english_permissions)}).+?"')
|
pattern = re.compile(f'allow="(?!{re.escape(english_permissions)}).+?"')
|
||||||
return pattern.sub(f'allow="{english_permissions}"', content)
|
return pattern.sub(f'allow="{english_permissions}"', content)
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
评论:真
|
comments: true
|
||||||
描述:探索使用pip、conda、git和Docker安装Ultralytics的各种方法。了解如何在命令行界面或Python项目中使用Ultralytics。
|
description: 探索使用pip、conda、git和Docker安装Ultralytics的各种方法。了解如何在命令行界面或Python项目中使用Ultralytics。
|
||||||
关键字:Ultralytics安装,pip安装Ultralytics,Docker安装Ultralytics,Ultralytics命令行界面,Ultralytics Python接口
|
keywords: Ultralytics安装,pip安装Ultralytics,Docker安装Ultralytics,Ultralytics命令行界面,Ultralytics Python接口
|
||||||
---
|
---
|
||||||
|
|
||||||
## 安装Ultralytics
|
## 安装Ultralytics
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = '8.0.211'
|
__version__ = '8.0.212'
|
||||||
|
|
||||||
from ultralytics.models import RTDETR, SAM, YOLO
|
from ultralytics.models import RTDETR, SAM, YOLO
|
||||||
from ultralytics.models.fastsam import FastSAM
|
from ultralytics.models.fastsam import FastSAM
|
||||||
|
@ -225,25 +225,29 @@ def plt_settings(rcparams=None, backend='Agg'):
|
|||||||
|
|
||||||
|
|
||||||
def set_logging(name=LOGGING_NAME, verbose=True):
|
def set_logging(name=LOGGING_NAME, verbose=True):
|
||||||
"""Sets up logging for the given name."""
|
"""Sets up logging for the given name with UTF-8 encoding support."""
|
||||||
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
level = logging.INFO if verbose and RANK in {-1, 0} else logging.ERROR # rank in world for Multi-GPU trainings
|
||||||
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
|
||||||
logging.config.dictConfig({
|
# Configure the console (stdout) encoding to UTF-8
|
||||||
'version': 1,
|
if WINDOWS: # for Windows
|
||||||
'disable_existing_loggers': False,
|
sys.stdout.reconfigure(encoding='utf-8')
|
||||||
'formatters': {
|
|
||||||
name: {
|
# Create and configure the StreamHandler
|
||||||
'format': '%(message)s'}},
|
stream_handler = logging.StreamHandler(sys.stdout)
|
||||||
'handlers': {
|
stream_handler.setFormatter(logging.Formatter('%(message)s'))
|
||||||
name: {
|
stream_handler.setLevel(level)
|
||||||
'class': 'logging.StreamHandler',
|
|
||||||
'formatter': name,
|
logger = logging.getLogger(name)
|
||||||
'level': level}},
|
logger.setLevel(level)
|
||||||
'loggers': {
|
logger.addHandler(stream_handler)
|
||||||
name: {
|
logger.propagate = False
|
||||||
'level': level,
|
return logger
|
||||||
'handlers': [name],
|
|
||||||
'propagate': False}}})
|
|
||||||
|
# Set logger
|
||||||
|
LOGGER = set_logging(LOGGING_NAME, verbose=VERBOSE) # define globally (used in train.py, val.py, predict.py, etc.)
|
||||||
|
for logger in 'sentry_sdk', 'urllib3.connectionpool':
|
||||||
|
logging.getLogger(logger).setLevel(logging.CRITICAL)
|
||||||
|
|
||||||
|
|
||||||
def emojis(string=''):
|
def emojis(string=''):
|
||||||
@ -251,29 +255,6 @@ def emojis(string=''):
|
|||||||
return string.encode().decode('ascii', 'ignore') if WINDOWS else string
|
return string.encode().decode('ascii', 'ignore') if WINDOWS else string
|
||||||
|
|
||||||
|
|
||||||
class EmojiFilter(logging.Filter):
|
|
||||||
"""
|
|
||||||
A custom logging filter class for removing emojis in log messages.
|
|
||||||
|
|
||||||
This filter is particularly useful for ensuring compatibility with Windows terminals that may not support the
|
|
||||||
display of emojis in log messages.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def filter(self, record):
|
|
||||||
"""Filter logs by emoji unicode characters on windows."""
|
|
||||||
record.msg = emojis(record.msg)
|
|
||||||
return super().filter(record)
|
|
||||||
|
|
||||||
|
|
||||||
# Set logger
|
|
||||||
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER
|
|
||||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
|
||||||
if WINDOWS: # emoji-safe logging
|
|
||||||
LOGGER.addFilter(EmojiFilter())
|
|
||||||
for logger in 'sentry_sdk', 'urllib3.connectionpool':
|
|
||||||
logging.getLogger(logger).setLevel(logging.CRITICAL)
|
|
||||||
|
|
||||||
|
|
||||||
class ThreadingLocked:
|
class ThreadingLocked:
|
||||||
"""
|
"""
|
||||||
A decorator class for ensuring thread-safe execution of a function or method. This class can be used as a decorator
|
A decorator class for ensuring thread-safe execution of a function or method. This class can be used as a decorator
|
||||||
|
Loading…
x
Reference in New Issue
Block a user